3 research outputs found
Effect of time at temperature on wild poliovirus titers in stool specimens
AbstractBackgroundThe effect of transport temperature on the viability of poliovirus in stool specimens from paralyzed cases has not been tested. Quality assurance of programmatic indicators will be necessary in the final phase of polio eradication.ObjectiveTo estimate the effect of time at elevated temperatures on wild poliovirus titers in stool specimens.MethodsWe exposed aliquots of pooled wild poliovirus type 1 specimens to elevated temperatures (27°C, 31°C, and 35°C) for varying time periods up to 14 days. We determined the virus titer of these aliquots and created decay curves at each temperature to estimate the relationship between time at temperature and virus titer.ResultsWe found significantly different slopes of decay at each temperature. The negative slopes increased as the temperature increased.ConclusionsWhile poliovirus in stool remains relatively stable at moderately elevated temperature, transport at higher temperatures could impact sample integrity and virus isolation results
Characterizing Poliovirus Transmission And Evolution: Insights From Modeling Experiences With Wild And Vaccine-Related Polioviruses
With national and global health policymakers facing numerous complex decisions related to achieving and maintaining polio eradication, we expanded our previously developed dynamic poliovirus transmission model using information from an expert literature review process and including additional immunity states and the evolution of oral poliovirus vaccine (OPV). The model explicitly considers serotype differences and distinguishes fecal-oral and oropharyngeal transmission. We evaluated the model by simulating diverse historical experiences with polioviruses, including one country that eliminated wild poliovirus using both OPV and inactivated poliovirus vaccine (IPV) (USA), three importation outbreaks of wild poliovirus (Albania, the Netherlands, Tajikistan), one situation in which no circulating vaccine-derived polioviruses (cVDPVs) emerge despite annual OPV use and cessation (Cuba), three cVDPV outbreaks (Haiti, Madura Island in Indonesia, northern Nigeria), one area of current endemic circulation of all three serotypes (northern Nigeria), and one area with recent endemic circulation and subsequent elimination of multiple serotypes (northern India). We find that when sufficient information about the conditions exists, the model can reproduce the general behavior of poliovirus transmission and outbreaks while maintaining consistency in the generic model inputs. The assumption of spatially homogeneous mixing remains a significant limitation that affects the performance of the differential equation-based model when significant heterogeneities in immunity and mixing may exist. Further studies on OPV virus evolution and improved understanding of the mechanisms of mixing and transmission may help to better characterize poliovirus transmission in populations. Broad application of the model promises to offer insights in the context of global and national policy and economic models. © 2013 Society for Risk Analysis