2,918 research outputs found
Waiting time dynamics of priority-queue networks
We study the dynamics of priority-queue networks, generalizations of the
binary interacting priority queue model introduced by Oliveira and Vazquez
[Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol
for interacting tasks is not scalable for the queue networks with loops because
the dynamics becomes frozen due to the priority conflicts. We then consider a
scalable interaction protocol, an OR-type one, and examine the effects of the
network topology and the number of queues on the waiting time distributions of
the priority-queue networks, finding that they exhibit power-law tails in all
cases considered, yet with model-dependent power-law exponents. We also show
that the synchronicity in task executions, giving rise to priority conflicts in
the priority-queue networks, is a relevant factor in the queue dynamics that
can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio
Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies
Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly
modulate FRB amplitudes for a wide range of distances, including the
Gpc distance of the repeater FRB121102. To produce caustics, the lens'
dispersion-measure depth (), scale size (), and distance
from the source () must satisfy . Caustics produce strong
magnifications () on short time scales ( hours to days and
perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to
1~GHz). However, strong suppression also occurs in long-duration (
months) troughs. For geometries that produce multiple images, the resulting
burst components will arrive differentially by s to tens of ms and
they will show different apparent dispersion measures, pc cm. Arrival time perturbations may mask any
underlying periodicity with period s. When arrival times differ by
less than the burst width, interference effects in dynamic spectra are
expected. Strong lensing requires source sizes smaller than , which can be satisfied by compact objects such as
neutron star magnetospheres but not by AGNs. Much of the phenomenology of the
repeating fast radio burst source FRB121102 is similar to lensing effects. The
overall picture can be tested by obtaining wideband spectra of bursts (from
to 10 GHz and possibly higher), which can also be used to characterize the
plasma environment near FRB sources. A rich variety of phenomena is expected
from an ensemble of lenses near the FRB source. We discuss constraints on
densities, magnetic fields, and locations of plasma lenses related to
requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa
Patterns of link reciprocity in directed networks
We address the problem of link reciprocity, the non-random presence of two
mutual links between pairs of vertices. We propose a new measure of reciprocity
that allows the ordering of networks according to their actual degree of
correlation between mutual links. We find that real networks are always either
correlated or anticorrelated, and that networks of the same type (economic,
social, cellular, financial, ecological, etc.) display similar values of the
reciprocity. The observed patterns are not reproduced by current models. This
leads us to introduce a more general framework where mutual links occur with a
conditional connection probability. In some of the studied networks we discuss
the form of the conditional connection probability and the size dependence of
the reciprocity.Comment: Final version accepted for publication on Physical Review Letter
Rotational Broadening of Atomic Spectral Features from Neutron Stars
The discovery of the first gravitationally redshifted spectral line from a
neutron star (NS) by Cottam, Paerels and Mendez has triggered theoretical
studies of the physics of atomic line formation in NS atmospheres. Chang,
Bildsten and Wasserman showed that the hydrogenic Fe H line formed
above the photosphere of a bursting NS is intrinsically broad. We now include
rotational broadening within general relativity and compare the resulting
profile to that observed during Type I bursts from EXO 0748-676. We show that
the fine structure splitting of the line precludes a meaningful constraint on
the radius. Our fitting of the data show that the line forming Fe column is
and
gravitational redshift with 95% confidence. We
calculate the detectability of this spectral feature for a large range of spins
and inclinations assuming that the emission comes from the entire surface. We
find that at 300 (600) Hz only 10-20% (5-10%) of NSs would have spectral
features as deep as that seen in EXO 0748-676.Comment: 4 pages, 4 figures, to appear in ApJ Letter
Magnetoelastic coupling in iron
Exchange interactions in {\alpha}- and {\gamma}-Fe are investigated within an
ab-initio spin spiral approach. We have performed total energy calculations for
different magnetic structures as a function of lattice distortions, related
with various cell volumes and the Bain tetragonal deformations. The effective
exchange parameters in {\gamma}-Fe are very sensitive to the lattice
distortions, leading to the ferromagnetic ground state for the tetragonal
deformation or increase of the volume cell. At the same time, the
magnetic-structure-independent part of the total energy changes very slowly
with the tetragonal deformations. The computational results demonstrate a
strong mutual dependence of crystal and magnetic structures in Fe and explain
the observable "anti-Invar" behavior of thermal expansion coefficient in
{\gamma}-Fe.Comment: Submitted to Phys. Rev.
Statistical Mechanics of Community Detection
Starting from a general \textit{ansatz}, we show how community detection can
be interpreted as finding the ground state of an infinite range spin glass. Our
approach applies to weighted and directed networks alike. It contains the
\textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the
modularity as defined by Newman and Girvan \cite{Girvan03} as special
cases. The community structure of the network is interpreted as the spin
configuration that minimizes the energy of the spin glass with the spin states
being the community indices. We elucidate the properties of the ground state
configuration to give a concise definition of communities as cohesive subgroups
in networks that is adaptive to the specific class of network under study.
Further we show, how hierarchies and overlap in the community structure can be
detected. Computationally effective local update rules for optimization
procedures to find the ground state are given. We show how the \textit{ansatz}
may be used to discover the community around a given node without detecting all
communities in the full network and we give benchmarks for the performance of
this extension. Finally, we give expectation values for the modularity of
random graphs, which can be used in the assessment of statistical significance
of community structure
Anderson lattice with explicit Kondo coupling: general features and the field-induced suppression of heavy-fermion state in ferromagnetic phase
We apply the extended (statistically-consistent, SGA) Gutzwiller-type
approach to the periodic Anderson model (PAM) in an applied magnetic field and
in the strong correlation limit. The finite-U corrections are included
systematically by transforming PAM into the form with Kondo-type interaction
and residual hybridization, appearing both at the same time. This effective
Hamiltonian represents the essence of \textit{Anderson-Kondo lattice model}. We
show that in ferromagnetic phases the low-energy single-particle states are
strongly affected by the presence of the applied magnetic field. We also find
that for large values of hybridization strength the system enters the so-called
\textit{locked heavy fermion state}. In this state the chemical potential lies
in the majority-spin hybridization gap and as a consequence, the system
evolution is insensitive to further increase of the applied field. However, for
a sufficiently strong magnetic field, the system transforms from the locked
state to the fully spin-polarized phase. This is accompanied by a metamagnetic
transition, as well as by drastic reduction of the effective mass of
quasiparticles. In particular, we observe a reduction of effective mass
enhancement in the majority-spin subband by as much as 20% in the fully
polarized state. The findings are consistent with experimental results for
CeLaB compounds. The mass enhancement for the spin-minority
electrons may also diminish with the increasing field, unlike for the
quasiparticles states in a single narrow band in the same limit of strong
correlations
- …