3,079 research outputs found
Hohenberg-Kohn theorem for the lowest-energy resonance of unbound systems
We show that under well-defined conditions the Hohenberg-Kohn theorem (HKT)
can be extended to the lowest-energy resonance of unbound systems. Using the
Gel'fand Levitan theorem, the extended version of the HKT can also be applied
to systems that support a finite number of bound states. The extended version
of the HKT provides an adequate framework to carry out DFT calculations of
negative electron affinities.Comment: 4 pages, 3 figure
Waiting time dynamics of priority-queue networks
We study the dynamics of priority-queue networks, generalizations of the
binary interacting priority queue model introduced by Oliveira and Vazquez
[Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol
for interacting tasks is not scalable for the queue networks with loops because
the dynamics becomes frozen due to the priority conflicts. We then consider a
scalable interaction protocol, an OR-type one, and examine the effects of the
network topology and the number of queues on the waiting time distributions of
the priority-queue networks, finding that they exhibit power-law tails in all
cases considered, yet with model-dependent power-law exponents. We also show
that the synchronicity in task executions, giving rise to priority conflicts in
the priority-queue networks, is a relevant factor in the queue dynamics that
can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio
Statistical Mechanics of Community Detection
Starting from a general \textit{ansatz}, we show how community detection can
be interpreted as finding the ground state of an infinite range spin glass. Our
approach applies to weighted and directed networks alike. It contains the
\textit{at hoc} introduced quality function from \cite{ReichardtPRL} and the
modularity as defined by Newman and Girvan \cite{Girvan03} as special
cases. The community structure of the network is interpreted as the spin
configuration that minimizes the energy of the spin glass with the spin states
being the community indices. We elucidate the properties of the ground state
configuration to give a concise definition of communities as cohesive subgroups
in networks that is adaptive to the specific class of network under study.
Further we show, how hierarchies and overlap in the community structure can be
detected. Computationally effective local update rules for optimization
procedures to find the ground state are given. We show how the \textit{ansatz}
may be used to discover the community around a given node without detecting all
communities in the full network and we give benchmarks for the performance of
this extension. Finally, we give expectation values for the modularity of
random graphs, which can be used in the assessment of statistical significance
of community structure
Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies
Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly
modulate FRB amplitudes for a wide range of distances, including the
Gpc distance of the repeater FRB121102. To produce caustics, the lens'
dispersion-measure depth (), scale size (), and distance
from the source () must satisfy . Caustics produce strong
magnifications () on short time scales ( hours to days and
perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to
1~GHz). However, strong suppression also occurs in long-duration (
months) troughs. For geometries that produce multiple images, the resulting
burst components will arrive differentially by s to tens of ms and
they will show different apparent dispersion measures, pc cm. Arrival time perturbations may mask any
underlying periodicity with period s. When arrival times differ by
less than the burst width, interference effects in dynamic spectra are
expected. Strong lensing requires source sizes smaller than , which can be satisfied by compact objects such as
neutron star magnetospheres but not by AGNs. Much of the phenomenology of the
repeating fast radio burst source FRB121102 is similar to lensing effects. The
overall picture can be tested by obtaining wideband spectra of bursts (from
to 10 GHz and possibly higher), which can also be used to characterize the
plasma environment near FRB sources. A rich variety of phenomena is expected
from an ensemble of lenses near the FRB source. We discuss constraints on
densities, magnetic fields, and locations of plasma lenses related to
requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa
- …