4 research outputs found
Bullying in elementary schools
Bullying is a serious problem in today\u27s schools. The history of bullying goes back as far as humans have been living and will continue if schools do not take action. Parents, teachers, administrators, counselors, and school staff are all involved in preventing bullying and intervening when necessary. This paper will define bullying, risk factors, and the effects of bullying on the bully, the victim, and the bystander. Interventions as well as how to prevent bullying will be addressed with emphasis on a whole school approach
Steroid drugs inhibit bacterial respiratory oxidases and are lethal towards methicillin-resistant Staphylococcus aureus
Background: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens.
Methods: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and Methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (i.e., cytochromes bd, bo or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects.
Results: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with IC50 values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli ‘bd-I only’ strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of a S. aureus ‘bd only’ strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli.
Conclusions: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species yet is only bactericidal towards S. aureus
The role of the aryl hydrocarbon receptor-interacting protein gene in familial
CONTEXT:
Mutations have been identified in the aryl hydrocarbon receptor-interacting protein (AIP) gene in familial isolated pituitary adenomas (FIPA). It is not clear, however, how this molecular chaperone is involved in tumorigenesis.
OBJECTIVE:
AIP sequence changes and expression were studied in FIPA and sporadic adenomas. The function of normal and mutated AIP molecules was studied on cell proliferation and protein-protein interaction. Cellular and ultrastructural AIP localization was determined in pituitary cells.
PATIENTS:
Twenty-six FIPA kindreds and 85 sporadic pituitary adenoma patients were included in the study.
RESULTS:
Nine families harbored AIP mutations. Overexpression of wild-type AIP in TIG3 and HEK293 human fibroblast and GH3 pituitary cell lines dramatically reduced cell proliferation, whereas mutant AIP lost this ability. All the mutations led to a disruption of the protein-protein interaction between AIP and phosphodiesterase-4A5. In normal pituitary, AIP colocalizes exclusively with GH and prolactin, and it is found in association with the secretory vesicle, as shown by double-immunofluorescence and electron microscopy staining. In sporadic pituitary adenomas, however, AIP is expressed in all tumor types. In addition, whereas AIP is expressed in the secretory vesicle in GH-secreting tumors, similar to normal GH-secreting cells, in lactotroph, corticotroph, and nonfunctioning adenomas, it is localized to the cytoplasm and not in the secretory vesicles.
CONCLUSIONS:
Our functional evaluation of AIP mutations is consistent with a tumor-suppressor role for AIP and its involvement in familial acromegaly. The abnormal expression and subcellular localization of AIP in sporadic pituitary adenomas indicate deranged regulation of this protein during tumorigenesis