13 research outputs found

    Tissue engineered, biomimetic acellular matrices for expansion of hematopoietic progenitors

    Full text link
    This thesis discusses a novel strategy for ex vivo expansion of human HSPC in a cell free culture system and it suggests methods to improve the functional properties of stromal cell derived ACMs to support ex-vivo HSPC growth

    Enhanced Ex Vivo expansion of human hematopoietic progenitors on native and spin coated acellular matrices prepared from bone marrow stromal cells

    Full text link
    The extracellular microenvironment in bone marrow (BM) is known to regulate the growth and differentiation of hematopoietic stem and progenitor cells (HSPC). We have developed cell-free matrices from a BM stromal cell line (HS-5), which can be used as substrates either in native form or as tissue engineered coatings, for the enhanced ex vivo expansion of umbilical cord blood (UCB) derived HSPC. The physicochemical properties (surface roughness, thickness, and uniformity) of native and spin coated acellular matrices (ACM) were studied using scanning and atomic force microscopy (SEM and AFM). Lineage-specific expansion of HSPC, grown on these substrates, was evaluated by immunophenotypic (flow cytometry) and functional (colony forming) assays. Our results show that the most efficient expansion of lineage-specific HSPC occurred on spin coated ACM. Our method provides an improved protocol for ex vivo HSPC expansion and it offers a system to study the in vivo roles of specific molecules in the hematopoietic niche that influence HSPC expansion

    Title-Inflammatory Signaling Pathways in Allergic and Infection-Associated Lung Diseases

    Get PDF
    Lung inflammation can be caused by pathogen infection alone or by allergic disease, leading to pneumonitis. Most of the allergens (antigens) that cause allergic lung diseases, including asthma and hypersensitivity pneumonitis (HP), are derived from microorganisms, such as bacteria, viruses, and fungi, but some inorganic materials, such as mercury, can also cause pneumonitis. Certain allergens, including food and pollen, can also cause acute allergic reactions and lead to lung inflammation in individuals predisposed to such reactions. Pattern recognition-associated and damage-associated signaling by these allergens can be critical in determining the type of hypersensitization and allergic disease, as well as the potential for fibrosis and irreversible lung damage. This review discusses the signs, symptoms, and etiology of allergic asthma, and HP. Furthermore, we review the immune response and signaling pathways involved in pneumonitis due to both microbial infection and allergic processes. We also discuss current and potential therapeutic interventions for infection-associated and allergic lung inflammation

    Title-Inflammatory Signaling Pathways in Allergic and Infection-Associated Lung Diseases

    No full text
    Lung inflammation can be caused by pathogen infection alone or by allergic disease, leading to pneumonitis. Most of the allergens (antigens) that cause allergic lung diseases, including asthma and hypersensitivity pneumonitis (HP), are derived from microorganisms, such as bacteria, viruses, and fungi, but some inorganic materials, such as mercury, can also cause pneumonitis. Certain allergens, including food and pollen, can also cause acute allergic reactions and lead to lung inflammation in individuals predisposed to such reactions. Pattern recognition-associated and damage-associated signaling by these allergens can be critical in determining the type of hypersensitization and allergic disease, as well as the potential for fibrosis and irreversible lung damage. This review discusses the signs, symptoms, and etiology of allergic asthma, and HP. Furthermore, we review the immune response and signaling pathways involved in pneumonitis due to both microbial infection and allergic processes. We also discuss current and potential therapeutic interventions for infection-associated and allergic lung inflammation

    Towards Clinical Translation of CD8+ Regulatory T Cells Restricted by Non-Classical Major Histocompatibility Complex Ib Molecules

    No full text
    In central lymphoid tissues, mature lymphocytes are generated and pathogenic autoreactive lymphocytes are deleted. However, it is currently known that a significant number of potentially pathogenic autoreactive lymphocytes escape the deletion and populate peripheral lymphoid tissues. Therefore, peripheral mechanisms are present to prevent these potentially pathogenic autoreactive lymphocytes from harming one’s own tissues. One such mechanism is dictated by regulatory T (Treg) cells. So far, the most extensively studied Treg cells are CD4+Foxp3+ Treg cells. However, recent clinical trials for the treatment of immune-mediated diseases using CD4+ Foxp3+ Treg cells met with limited success. Accordingly, it is necessary to explore the potential importance of other Treg cells such as CD8+ Treg cells. In this regard, one extensively studied CD8+ Treg cell subset is Qa-1(HLA-E in human)-restricted CD8+ Treg cells, in which Qa-1(HLA-E) molecules belong to a group of non-classical major histocompatibility complex Ib molecules. This review will first summarize the evidence for the presence of Qa-1-restricted CD8+ Treg cells and their regulatory mechanisms. Major discussions will then focus on the potential clinical translation of Qa-1-restricted CD8+ Treg cells. At the end, we will briefly discuss the current status of human studies on HLA-E-restricted CD8+ Treg cells as well as potential future directions

    The Effects of Insulin-Like Growth Factor I and BTP-2 on Acute Lung Injury

    No full text
    Acute lung injury (ALI) afflicts approximately 200,000 patients annually and has a 40% mortality rate. The COVID-19 pandemic has massively increased the rate of ALI incidence. The pathogenesis of ALI involves tissue damage from invading microbes and, in severe cases, the overexpression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). This study aimed to develop a therapy to normalize the excess production of inflammatory cytokines and promote tissue repair in the lipopolysaccharide (LPS)-induced ALI. Based on our previous studies, we tested the insulin-like growth factor I (IGF-I) and BTP-2 therapies. IGF-I was selected, because we and others have shown that elevated inflammatory cytokines suppress the expression of growth hormone receptors in the liver, leading to a decrease in the circulating IGF-I. IGF-I is a growth factor that increases vascular protection, enhances tissue repair, and decreases pro-inflammatory cytokines. It is also required to produce anti-inflammatory 1,25-dihydroxyvitamin D. BTP-2, an inhibitor of cytosolic calcium, was used to suppress the LPS-induced increase in cytosolic calcium, which otherwise leads to an increase in proinflammatory cytokines. We showed that LPS increased the expression of the primary inflammatory mediators such as toll like receptor-4 (TLR-4), IL-1β, interleukin-17 (IL-17), TNF-α, and interferon-γ (IFN-γ), which were normalized by the IGF-I + BTP-2 dual therapy in the lungs, along with improved vascular gene expression markers. The histologic lung injury score was markedly elevated by LPS and reduced to normal by the combination therapy. In conclusion, the LPS-induced increases in inflammatory cytokines, vascular injuries, and lung injuries were all improved by IGF-I + BTP-2 combination therapy

    IGF-1 Deficiency Rescue and Intracellular Calcium Blockade Improves Survival and Corresponding Mechanisms in a Mouse Model of Acute Kidney Injury

    No full text
    This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency. (2) Next, at the 7-day time point, our combination therapy, compared to the untreated group, caused a significant increase in survival, which was noteworthy because all of the untreated animals died in 72 h. (3) The four pathways associated with inflammation, including (A) increase in cytosolic calcium, (B) elaboration of proinflammatory cytokines, (C) impairment of vascular integrity, and (D) cell injury, were adversely affected in renal tissue by LPS, using a sublethal dose of LPS. The expression of several genes was measured in each of the above pathways. The combined therapy of IGF-1 and BTP-2 caused a favorable gene expression response in all four pathways. Our current study was an AKI study, but these pathways are also involved in other types of severe inflammation, including sepsis, acute respiratory distress syndrome, and probably severe coronavirus infection

    Dopamine transporter (DAT1) VNTR polymorphism in 12 Indian populations

    No full text
    The dopamine transporter (DAT1) is a membrane spanning protein that binds the neurotransmitter dopamine and performs re-uptake of dopamine from the synapse into a neuron. The gene encoding DAT1 consists of 15 exons spanning 60 kb on chromosome 5p15.32. Several studies have investigated the possible associations between variants in DAT1 gene and psychiatric disorders. The present study aimed to determine the distribution of the variable number of tandem repeat (VNTR) polymorphism in the 3' untranslated region of DAT1 in 12 Indian populations. A total of 471 healthy unrelated individuals in 12 Indian populations from 3 linguistic groups were included in the present study. The analysis was carried out using PCR and electrophoresis. Overall, 4 alleles of the DAT1 40-bp VNTR, ranging from 7 to 11 repeats were detected. Heterozygosity indices were low and varied from 0.114 to 0.406. The results demonstrate the variability of the DAT1 40-bp VNTR polymorphism in Indian populations and revealed a high similarity with East Asian populations

    Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability

    No full text
    Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls. Additionally, the GILT-treated blasts that survived were found to exhibit higher expressions of the CXCR2 gene and protein, a common receptor for MIF and pro-inflammatory cytokines. The supplementation of exogenous MIF to GILT-treated blasts revealed a group of CD44High+ cells that might be responsible for the relapse. Furthermore, we identified the highly activated non-classical NFKB2 pathway after GILT-treatment. The siRNA transient knockdown of NFKB2 significantly reduced the gene expressions of MIF, CXCR2, and CXCL5. Finally, treatments of AML patient samples ex vivo demonstrated that the combination of a pharmaceutical inhibitor of the NFKB family and GILT can effectively suppress primary blasts’ secretion of tumor-promoting cytokines, such as CXCL1/5/8. In summary, we provide the first evidence that targeting treatment-activated compensatory pathways, such as the NFKB2-MIF/CXCLs-CXCR2 axis could be a novel therapeutic strategy to overcome TKI-resistance and effectively treat AML patients with FLT3 mutations
    corecore