10 research outputs found
Rab38 and Rab32 control post-Golgi trafficking of melanogenic enzymes
Amutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype “chocolate” (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38G19V is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles
Rab27a targeting to melanosomes requires nucleotide exchange but not effector binding
Rab GTPases are important determinants of organelle identity and regulators of vesicular transport pathways. Consequently, each Rab occupies a highly specific subcellular localization. However, the precise mechanisms governing Rab targeting remain unclear. Guanine nucleotide exchange factors (GEFs), putative membrane-resident targeting factors and effector binding have all been implicated as critical regulators of Rab targeting. Here, we address these issues using Rab27a targeting to melanosomes as a model system. Rab27a regulates motility of lysosome-related organelles and secretory granules. Its effectors have been characterized extensively, and we have identified Rab3GEP as the non-redundant Rab27a GEF in melanocytes (Figueiredo AC et al. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 2008;283:23209-23216). Using Rab27a mutants that show impaired binding to representatives of all four Rab27a effector subgroups, we present evidence that effector binding is not essential for targeting of Rab27a to melanosomes. In contrast, we observed that knockdown of Rab3GEP resulted in mis-targeting of Rab27a, suggesting that Rab3GEP activity is required for correct targeting of Rab27a. However, the identification of Rab27a mutants that undergo efficient GDP/GTP exchange in the presence of Rab3GEP in vitro but are mis-targeted in a cellular context indicates that nucleotide loading is not the sole determinant of subcellular targeting of Rab27a. Our data support a model in which exchange activity, but not effector binding, represents one essential factor that contributes to membrane targeting of Rab proteins.publishersversionpublishe
Rab3GEP Is the Non-redundant Guanine Nucleotide Exchange Factor for Rab27a in Melanocytes *
Rab GTPases regulate discrete steps in vesicular transport pathways. Rabs require activation by specific guanine nucleotide exchange factors (GEFs) that stimulate the exchange of GDP for GTP. Rab27a controls motility and regulated exocytosis of secretory granules and related organelles. In melanocytes, Rab27a regulates peripheral transport of mature melanosomes by recruiting melanophilin and myosin Va. Here, we studied the activation of Rab27a in melanocytes. We identify Rab3GEP, previously isolated as a GEF for Rab3a, as the non-redundant Rab27a GEF. Similar to Rab27a-deficient ashen melanocytes, Rab3GEP-depleted cells show both clustering of melanosomes in the perinuclear area and loss of the Rab27a effector Mlph. Consistent with a role as an activator, levels of Rab27a-GTP are decreased in cells lacking Rab3GEP. Recombinant Rab3GEP exhibits guanine nucleotide exchange activity against Rab27a and Rab27b in vitro, in addition to its previously documented activity against Rab3. Our results indicate promiscuity in Rab GEF action and suggest that members of related but functionally distinct Rab subfamilies can be controlled by common activators
Rab8 Regulates the Actin-based Movement of Melanosomes
Rab GTPases have been implicated in the regulation of specific microtubule- and actin-based motor proteins. We devised an in vitro motility assay reconstituting the movement of melanosomes on actin bundles in the presence of ATP to investigate the role of Rab proteins in the actin-dependent movement of melanosomes. Using this assay, we confirmed that Rab27 is required for the actin-dependent movement of melanosomes, and we showed that a second Rab protein, Rab8, also regulates this movement. Rab8 was partially associated with mature melanosomes. Expression of Rab8Q67L perturbed the cellular distribution and increased the frequency of microtubule-independent movement of melanosomes in vivo. Furthermore, anti-Rab8 antibodies decreased the number of melanosomes moving in vitro on actin bundles, whereas melanosomes isolated from cells expressing Rab8Q67L exhibited 70% more movements than wild-type melanosomes. Together, our observations suggest that Rab8 is involved in regulating the actin-dependent movement of melanosomes
Rab3GEP Is the Non-redundant Guanine Nucleotide Exchange Factor for Rab27a in Melanocytes*
Rab GTPases regulate discrete steps in vesicular transport pathways. Rabs require activation by specific guanine nucleotide exchange factors (GEFs) that stimulate the exchange of GDP for GTP. Rab27a controls motility and regulated exocytosis of secretory granules and related organelles. In melanocytes, Rab27a regulates peripheral transport of mature melanosomes by recruiting melanophilin and myosin Va. Here, we studied the activation of Rab27a in melanocytes. We identify Rab3GEP, previously isolated as a GEF for Rab3a, as the non-redundant Rab27a GEF. Similar to Rab27a-deficient ashen melanocytes, Rab3GEP-depleted cells show both clustering of melanosomes in the perinuclear area and loss of the Rab27a effector Mlph. Consistent with a role as an activator, levels of Rab27a-GTP are decreased in cells lacking Rab3GEP. Recombinant Rab3GEP exhibits guanine nucleotide exchange activity against Rab27a and Rab27b in vitro, in addition to its previously documented activity against Rab3. Our results indicate promiscuity in Rab GEF action and suggest that members of related but functionally distinct Rab subfamilies can be controlled by common activators
Melanosome Maturation Defect in Rab38-deficient Retinal Pigment Epithelium Results in Instability of Immature Melanosomes during Transient Melanogenesis
Pathways of melanosome biogenesis in retinal pigment epithelial (RPE) cells have received less attention than those of skin melanocytes. Although the bulk of melanin synthesis in RPE cells occurs embryonically, it is not clear whether adult RPE cells continue to produce melanosomes. Here, we show that progression from pmel17-positive premelanosomes to tyrosinase-positive mature melanosomes in the RPE is largely complete before birth. Loss of functional Rab38 in the “chocolate” (cht) mouse causes dramatically reduced numbers of melanosomes in adult RPE, in contrast to the mild phenotype previously shown in skin melanocytes. Choroidal melanocytes in cht mice also have reduced melanosome numbers, but a continuing low level of melanosome biogenesis gradually overcomes the defect, unlike in the RPE. Partial compensation by Rab32 that occurs in skin melanocytes is less effective in the RPE, presumably because of the short time window for melanosome biogenesis. In cht RPE, premelanosomes form but delivery of tyrosinase is impaired. Premelanosomes that fail to deposit melanin are unstable in both cht and tyrosinase-deficient RPE. Together with the high levels of cathepsin D in immature melanosomes of the RPE, our results suggest that melanin deposition may protect the maturing melanosome from the activity of lumenal acid hydrolases