4 research outputs found

    Differential effects of motor efference copies and proprioceptive information on response evaluation processes

    No full text
    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response

    Neural correlates of individual performance differences in resolving perceptual conflict

    Get PDF
    Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection

    Frontal and parietal EEG alpha asymmetry

    No full text
    EEG resting-state alpha asymmetry is one of the most widely investigated forms of functional hemispheric asymmetries in both basic and clinical neuroscience. However, studies yield inconsistent results. One crucial prerequisite to obtain reproducible results is the reliability of the index of interest. There is a body of research suggesting a moderate-to-good reliability of EEG resting-state alpha asymmetry, but unfortunately sample sizes in these studies are typically small. This study presents the first large-scale short-term reliability study of frontal and parietal EEG resting-state alpha asymmetry. We used the Dortmund Vital Study data set containing 370 participants. In each participant, EEG resting state was recorded eight times, twice with their eyes opened, twice with their eyes-closed, each on two different EEG systems. We found good reliability of EEG alpha power and alpha asymmetry on both systems for electrode pairs. We also found that alpha power asymmetry reliability is higher in the eyes-closed condition than in the eyes-open condition. The frontomedial electrode pair showed weaker reliability than the frontolateral and parietal electrode pairs. Interestingly, we found no population-level alpha asymmetry in frontal electrodes, one of the most investigated electrode sites in alpha asymmetry research. In conclusion, our results suggest that while EEG alpha asymmetry is an overall reliable measure, frontal alpha asymmetry should be assessed using multiple electrode pairs
    corecore