5 research outputs found

    Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend from Fused Deposition Modeling as Potential Cartilage Scaffolds

    No full text
    The scaffolds of poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PCL/PHBV) blends were fabricated from fused deposition modeling. From indirect cytotoxicity testing based on mouse fibroblasts, all scaffolds with various blend ratios were nontoxic to cells. The surface-treated scaffold with a blend ratio of 25/75 PCL/PHBV exhibited the highest proliferation of porcine chondrocytes and total glycosaminoglycans (GAGs) after 21 days of culture. The scaffolds with a blend ratio of 25/75 with local pores (LP) were prepared from FDM along with a salt leaching technique using NaCl as porogens. The effect of NaOH in surface treatment on the biological property of scaffolds was investigated. The scaffolds with LP and with 1 M NaOH surface treatment exhibited the highest proliferation of cells and total GAGs after 28 days of culture. The degradation behaviors of the scaffolds were studied. The nonsurface treated, surface treated without LP, and surface treated with LP scaffolds were degraded in phosphate buffer (pH 7.4) for 30 days at 37°C and 50°C for nonenzymatic condition and at 37°C for enzymatic condition. The surface treated with LP scaffold showed the highest amount of weight loss, followed by the surface treated without LP, and the nonsurface-treated scaffolds without LP, respectively. The results from Fourier-transform infrared spectroscopy indicated degradation of PCL and PHBV through hydrolysis of the ester functional group. The compressive strengths of all scaffolds were sufficiently high. The results suggested that the scaffolds with the existence of LP and with surface treatment showed the highest potential for use as cartilage scaffolds
    corecore