1,691 research outputs found

    Real-time Spin Systems from Lattice Field Theory

    Full text link
    We construct a lattice field theory method for computing the real-time dynamics of spin systems in a thermal bath. This is done by building on previous work of Takano with Schwinger-Keldysh and functional differentiation techniques. We derive a Schwinger-Keldysh path integral for generic spin Hamiltonians, then demonstrate the method on a simple system. Our path integral has a sign problem, which generally requires exponential run time in the system size, but requires only linear storage. The latter may place this method at an advantage over exact diagonalization, which is exponential in both. Our path integral is amenable to contour deformations, a technique for reducing sign problems.Comment: 7 pages, 2 figures, 1 tabl

    A study of symmetry breaking in a relativistic Bose gas using the contraction algorithm

    Get PDF
    A relativistic Bose gas at finite density suffers from a sign problem that makes direct numerical simulations not feasible. One possible solution to the sign problem is to re-express the path integral in terms of Lefschetz thimbles. Using this approach we study the relativistic Bose gas both in the symmetric phase (low-density) and the spontaneously broken phase (high-density). In the high-density phase we break explicitly the symmetry and determine the dependence of the order parameter on the breaking. We study the relative contributions of the dominant and sub-dominant thimbles in this phase. We find that the sub-dominant thimble only contributes substantially when the explicit symmetry breaking is small, a regime that is dominated by finite volume effects. In the regime relevant for the thermodynamic limit, this contribution is negligible.Comment: 12 pages, 6 figures, 1 tabl
    • …
    corecore