150 research outputs found

    Strand Transfer and Elongation of HIV-1 Reverse Transcription Is Facilitated by Cell Factors In Vitro

    Get PDF
    Recent work suggests a role for multiple host factors in facilitating HIV-1 reverse transcription. Previously, we identified a cellular activity which increases the efficiency of HIV-1 reverse transcription in vitro. Here, we describe aspects of the activity which shed light on its function. The cellular factor did not affect synthesis of strong-stop DNA but did improve downstream DNA synthesis. The stimulatory activity was isolated by gel filtration in a single fraction of the exclusion volume. Velocity-gradient purified HIV-1, which was free of detectable RNase activity, showed poor reverse transcription efficiency but was strongly stimulated by partially purified cell proteins. Hence, the cell factor(s) did not inactivate an RNase activity that might degrade the viral genomic RNA and block completion of reverse transcription. Instead, the cell factor(s) enhanced first strand transfer and synthesis of late reverse transcription suggesting it stabilized the reverse transcription complex. The factor did not affect lysis of HIV-1 by Triton X-100 in the endogenous reverse transcription (ERT) system, and ERT reactions with HIV-1 containing capsid mutations, which varied the biochemical stability of viral core structures and impeded reverse transcription in cells, showed no difference in the ability to be stimulated by the cell factor(s) suggesting a lack of involvement of the capsid in the in vitro assay. In addition, reverse transcription products were found to be resistant to exogenous DNase I activity when the active fraction was present in the ERT assay. These results indicate that the cell factor(s) may improve reverse transcription by facilitating DNA strand transfer and DNA synthesis. It also had a protective function for the reverse transcription products, but it is unclear if this is related to improved DNA synthesis

    Use of Saliva for Early Dengue Diagnosis

    Get PDF
    The importance of laboratory diagnosis of dengue cannot be undermined. In recent years, many dengue diagnostic tools have become available for various stages of the disease, but the one limitation is that they require blood as a specimen for testing. In many incidences, phlebotomy in needle-phobic febrile individuals, especially children, can be challenging, and the tendency to forgo a dengue blood test is high. To circumvent this, we decided to work toward a saliva-based assay (antigen-capture anti-DENV IgA ELISA, ACA-ELISA) that has the necessary sensitivity and specificity to detect dengue early. Overall sensitivity of the ACA-ELISA, when tested on saliva collected from dengue-confirmed patients (EDEN study) at three time points, was 70% in the first 3 days after fever onset and 93% between 4 to 8 days after fever onset. In patients with secondary dengue infections, salivary IgA was detected on the first day of fever onset in all the dengue confirmed patients. This demonstrates the utility of saliva in the ACA-ELISA for early dengue diagnostics. This technique is easy to perform, cost effective, and is especially useful in dengue endemic countries

    Revisiting HIV-1 uncoating

    Get PDF
    HIV uncoating is defined as the loss of viral capsid that occurs within the cytoplasm of infected cells before entry of the viral genome into the nucleus. It is an obligatory step of HIV-1 early infection and accompanies the transition between reverse transcription complexes (RTCs), in which reverse transcription occurs, and pre-integration complexes (PICs), which are competent to integrate into the host genome. The study of the nature and timing of HIV-1 uncoating has been paved with difficulties, particularly as a result of the vulnerability of the capsid assembly to experimental manipulation. Nevertheless, recent studies of capsid structure, retroviral restriction and mechanisms of nuclear import, as well as the recent expansion of technical advances in genome-wide studies and cell imagery approaches, have substantially changed our understanding of HIV uncoating. Although early work suggested that uncoating occurs immediately following viral entry in the cell, thus attributing a trivial role for the capsid in infected cells, recent data suggest that uncoating occurs several hours later and that capsid has an all-important role in the cell that it infects: for transport towards the nucleus, reverse transcription and nuclear import. Knowing that uncoating occurs at a later stage suggests that the viral capsid interacts extensively with the cytoskeleton and other cytoplasmic components during its transport to the nucleus, which leads to a considerable reassessment of our efforts to identify potential therapeutic targets for HIV therapy. This review discusses our current understanding of HIV uncoating, the functional interplay between infectivity and timely uncoating, as well as exposing the appropriate methods to study uncoating and addressing the many questions that remain unanswered

    Leukotrienes inhibit early stages of HIV-1 infection in monocyte-derived microglia-like cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microglia are one of the main cell types to be productively infected by HIV-1 in the central nervous system (CNS). Leukotriene B<sub>4 </sub>(LTB<sub>4</sub>) and cysteinyl-leukotrienes such as LTC<sub>4 </sub>are some of the proinflammatory molecules produced in infected individuals that contribute to neuroinflammation. We therefore sought to investigate the role of leukotrienes (LTs) in HIV-1 infection of microglial cells.</p> <p>Methods</p> <p>To evaluate the role of LTs on HIV-1 infection in the CNS, monocyte-derived microglial-like cells (MDMis) were utilized in this study. Leukotriene-treated MDMis were infected with either fully replicative brain-derived HIV-1 isolates (YU2) or R5-tropic luciferase-encoding particles in order to assess viral production and expression. The efficacy of various steps of the replication cycle was evaluated by means of p24 quantification by ELISA, luciferase activity determination and quantitative real-time polymerase chain reaction (RT-PCR).</p> <p>Results</p> <p>We report in this study that virus replication is reduced upon treatment of MDMis with LTB<sub>4 </sub>and LTC<sub>4</sub>. Additional experiments indicate that these proinflammatory molecules alter the pH-independent entry and early post-fusion events of the viral life cycle. Indeed, LT treatment induced a diminution in integrated proviral DNA while reverse-transcribed viral products remained unaffected. Furthermore, decreased C-C chemokine receptor type 5 (CCR5) surface expression was observed in LT-treated MDMis. Finally, the effect of LTs on HIV-1 infection in MDMis appears to be mediated partly via a signal transduction pathway involving protein kinase C.</p> <p>Conclusions</p> <p>These data show for the first time that LTs influence microglial cell infection by HIV-1, and may be a factor in the control of viral load in the CNS.</p

    In Vitro and In Vivo Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection

    Get PDF
    The antifungal effects of the novel triazole, PC1244, designed for topical or inhaled administration, againstA. fumigatushave been tested in a range ofin vitroandin vivostudies. PC1244 demonstrated potent antifungal activities against clinicalA. fumigatusisolates (N=96) with a MIC range of 0.016--0.25 μg/ml, whereas the MIC range for voriconazole was 0.25--0.5 μg/ml. PC1244 was a strong tight-binding inhibitor of recombinantA. fumigatusCYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis inA. fumigatuswith an IC50of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC ranged from <0.0078∼2 μg/ml), especially onAspergillus terreus,Trichophyton rubrum,Candida albicans,Candida glabrata,Candida krusei,Cryptococcus gattii,Cryptococcus neoformans and Rhizopus oryzaePC1244 also proved to be quickly absorbed into bothA. fumigatushyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (MFC, 2 μg/ml), which was 8-fold more potent than voriconazole.In vivo, once daily intranasal administration of PC1244 (3.2 ∼ 80μg/mL) to temporarily neutropenic, immunocompromised mice 24h after inoculation with itraconazole-susceptibleA. fumigatussubstantially reduced fungal load in the lung, galactomannan in serum and circulating inflammatory cytokines. Furthermore, 7 days extended prophylaxis with PC1244 showed superiorin vivoeffects when compared against 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment ofA. fumigatusinfection in the lungs of humans
    corecore