50 research outputs found

    Fibrosis in systemic sclerosis: common and unique pathobiology

    Get PDF
    Fibrosis in systemic sclerosis (SSc), a complex polygenic disease associated with autoimmunity and proliferative/obliterative vasculopathy, shares pathobiologic features in common with other fibrosing illnesses, but also has distinguishing characteristics. Fibroblast activation induced by transforming growth factor-β (TGF-β), Wnts and innate immune receptors, along with oxidative stress and reactive oxygen species (ROS) are implicated in pathogenesis. On the other hand, the roles of endothelial-mesenchymal differentiation and bone marrow-derived fibrocytes remain to be established. Fibrotic responses are modulated by transcriptional activators and cofactors, epigenetic factors, and microRNAs that can amplify or inhibit ligand-induced signaling. The nuclear orphan receptor PPAR-γ appears to be important in governing the duration and intensity of fibroblast activation and mesenchymal progenitor cell differentiation, and defects in PPAR-γ expression or function in SSc may underlie the uncontrolled progression of fibrosis. Identifying the perturbations in signaling pathways and cellular differentiation programs responsible for tissue damage and fibrosis in SSc allows their selective targeting using novel compounds, or by innovative uses of already-approved drugs (drug repurposing)

    αT-catenin in restricted brain cell types and its potential connection to autism

    Get PDF
    BACKGROUND: Recent genetic association studies have linked the cadherin-based adherens junction protein alpha-T-catenin (αT-cat, CTNNA3) with the development of autism. Where αT-cat is expressed in the brain, and how its loss could contribute to this disorder, are entirely unknown. METHODS: We used the αT-cat knockout mouse to examine the localization of αT-cat in the brain, and we used histology and immunofluorescence analysis to examine the neurobiological consequences of its loss. RESULTS: We found that αT-cat comprises the ependymal cell junctions of the ventricles of the brain, and its loss led to compensatory upregulation of αE-cat expression. Notably, αT-cat was not detected within the choroid plexus, which relies on cell junction components common to typical epithelial cells. While αT-cat was not detected in neurons of the cerebral cortex, it was abundantly detected within neuronal structures of the molecular layer of the cerebellum. Although αT-cat loss led to no overt differences in cerebral or cerebellar structure, RNA-sequencing analysis from wild type versus knockout cerebella identified a number of disease-relevant signaling pathways associated with αT-cat loss, such as GABA-A receptor activation. CONCLUSIONS: These findings raise the possibility that the genetic associations between αT-cat and autism may be due to ependymal and cerebellar defects, and highlight the potential importance of a seemingly redundant adherens junction component to a neurological disorder

    Egr3 Dependent Sympathetic Target Tissue Innervation in the Absence of Neuron Death

    Get PDF
    Nerve Growth Factor (NGF) is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS) development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation

    Egr-1 Induces a Profibrotic Injury/Repair Gene Program Associated with Systemic Sclerosis

    Get PDF
    Transforming growth factor-ß (TGF-ß) signaling is implicated in the pathogenesis of fibrosis in scleroderma or systemic sclerosis (SSc), but the precise mechanisms are poorly understood. The immediate-early gene Egr-1 is an inducible transcription factor with key roles in mediating fibrotic TGF-ß responses. To elucidate Egr-1 function in SSc-associated fibrosis, we examined change in gene expression induced by Egr-1 in human fibroblasts at the genome-wide level. Using microarray expression analysis, we derived a fibroblast “Egr-1-responsive gene signature” comprising over 600 genes involved in cell proliferation, TGF-ß signaling, wound healing, extracellular matrix synthesis and vascular development. The experimentally derived “Egr-1-responsive gene signature” was then evaluated in an expression microarray dataset comprising skin biopsies from 27 patients with localized and systemic forms of scleroderma and six healthy controls. We found that the “Egr-1 responsive gene signature” was substantially enriched in the “diffuse-proliferation” subset comprising exclusively of patients with diffuse cutaneous SSc (dcSSc) of skin biopsies. A number of Egr-1-regulated genes was also associated with the “inflammatory” intrinsic subset. Only a minority of Egr-1-regulated genes was concordantly regulated by TGF-ß. These results indicate that Egr-1 induces a distinct profibrotic/wound healing gene expression program in fibroblasts that is associated with skin biopsies from SSc patients with diffuse cutaneous disease. These observations suggest that targeting Egr-1 expression or activity might be a novel therapeutic strategy to control fibrosis in specific SSc subsets

    Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback

    Full text link
    Mammalian locomotor programs are thought to be directed by the actions of spinal interneuron circuits collectively referred to as "central pattern generators." The contribution of proprioceptive sensory feedback to the coordination of locomotor activity remains less clear. We have analyzed changes in mouse locomotor pattern under conditions in which proprioceptive feedback is attenuated genetically and biomechanically. We find that locomotor pattern degrades upon elimination of proprioceptive feedback from muscle spindles and Golgi tendon organs. The degradation of locomotor pattern is manifest as the loss of interjoint coordination and alternation of flexor and extensor muscles. Group Ia/II sensory feedback from muscle spindles has a predominant influence in patterning the activity of flexor muscles, whereas the redundant activities of group Ia/II and group Ib afferents appear to determine the pattern of extensor muscle firing. These findings establish a role for proprioceptive feedback in the control of fundamental aspects of mammalian locomotor behavior

    The Neuroplasticity-Associated Arc Gene Is a Direct Transcriptional Target of Early Growth Response (Egr) Transcription Factors

    Full text link
    Early growth response (Egr) transcription factors (Egr1 to Egr4) are synaptic activity-inducible immediate early genes (IEGs) that regulate some aspects of synaptic plasticity-related to learning and memory, yet the target genes regulated by them are unknown. In particular, Egr1 is essential for persistence of late-phase long-term potentiation (L-LTP), for hippocampus-dependent long-term memory formation, and for reconsolidation of previously established memories. Here, we show that Egr1 and Egr3 directly regulate the plasticity-associated activity-regulated cytoskeletal-related (Arc) gene, a synaptic activity-induced effector molecule which is also required for L-LTP and hippocampus-dependent learning and memory processing. Moreover, Egr1-deficient and Egr3-deficient mice lack Arc protein in a subpopulation of neurons, while mice lacking both Egr1 and Egr3 lack Arc in all neurons. Thus, Egr1 and Egr3 can indirectly modulate synaptic plasticity by directly regulating Arc and the plasticity mechanisms it mediates in recently activated synapses
    corecore