352 research outputs found

    Stress Dependence of Exciton Relaxation Processes in Cu2O

    Full text link
    A comprehensive study of the exciton relaxation processes in Cu2O has led to some surprises. We find that the ortho-para conversion rate becomes slower at high stress, and that the Auger nonradiative recombination rate increases with stress, with apparently no Auger recombination at zero stress. These results have important consequences for the pursuit of Bose-Einstein condensation of excitons in a harmonic potential.Comment: 10 figures, 1 tabl

    Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen

    Get PDF
    AbstractThe expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA) termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Trapping Long-Lifetime Excitons in a Two-Dimensional Harmonic Potential

    Full text link
    We report an important step forward for the goal of unambiguous observation of Bose-Einstein condensation of excitons in semiconductors. We have demonstrated a system in which excitons live for microseconds, much longer than their thermalization time, move over distances of hundreds of microns, and can be trapped in a harmonic potential exactly analous to the traps for atomic condensates. We also report recent results of a new method for observing evidence of Bose-Einstein condensation, by angular resolution of the emitted luminescence.Comment: Invited paper for International Conference on Spontaneous Coherence in Excitonic Systems, Seven Springs, PA, May 2004. To appear in Solid State Communication

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 = 0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the 2-gamma exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened to meet PRL length limit, clarified some text after referee's comment

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    Seasonal size variation in the predatory cladoceran Bythotrephes cederstroemii in Lake Michigan

    Full text link
    1.  Dry weight, body length and spine length were measured for the exotic cladoceran Bythotrephes cederstroemii collected from offshore and inshore stations in southeastern Lake Michigan. Average dry weight of each developmental stage exhibited seasonal variation by a factor of more than 5. 2.  Mean dry weight of Bythotrephes was closely correlated with water temperature. Contrary to the inverse relationship between water temperature and body size frequently observed for other invertebrates, the dry weight of Bythotrephes increased at higher ambient temperatures. 3.  No significant correlation was observed between abundances of major zooplankton taxa and the dry weight of Bythotrephes . An indirect effect of temperature on prey consumption may cause seasonal variation in dry weight of Bythotrephes in Lake Michigan. 4.  Distances between adjacent pairs of barbs, added to the caudal spine with each moult, are significantly shorter in Bythotrephes which produce resting eggs. Less material investment in the exoskeleton of sexually reproducing females was observed in favour of growth and reproduction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74641/1/j.1365-2427.1994.tb00842.x.pd

    Multipolar Reactive DPD: A Novel Tool for Spatially Resolved Systems Biology

    Full text link
    This article reports about a novel extension of dissipative particle dynamics (DPD) that allows the study of the collective dynamics of complex chemical and structural systems in a spatially resolved manner with a combinatorially complex variety of different system constituents. We show that introducing multipolar interactions between particles leads to extended membrane structures emerging in a self-organized manner and exhibiting both the necessary mechanical stability for transport and fluidity so as to provide a two-dimensional self-organizing dynamic reaction environment for kinetic studies in the context of cell biology. We further show that the emergent dynamics of extended membrane bound objects is in accordance with scaling laws imposed by physics.Comment: submitted to CMSB 0
    corecore