592 research outputs found
The Race Between Stars and Quasars in Reionizing Cosmic Hydrogen
The cosmological background of ionizing radiation has been dominated by
quasars once the Universe aged by ~2 billion years. At earlier times (redshifts
z>3), the observed abundance of bright quasars declined sharply, implying that
cosmic hydrogen was reionized by stars instead. Here, we explain the physical
origin of the transition between the dominance of stars and quasars as a
generic feature of structure formation in the concordance LCDM cosmology. At
early times, the fraction of baryons in galaxies grows faster than the maximum
(Eddington-limited) growth rate possible for quasars. As a result, quasars were
not able to catch up with the rapid early growth of stellar mass in their host
galaxies.Comment: 5 pages, 1 figure, Accepted for publication in JCA
Integrated chronological control on an archaeologically significant Pleistocene river terrace sequence: the Thames-Medway, eastern Essex, England
Late Middle Pleistocene Thames-Medway deposits in eastern Essex comprise both large expanses of Palaeolithic artefact-bearing river sands/gravels and deep channels infilled with thick sequences of fossiliferous fine-grained estuarine sediments that yield valuable palaeoenvironmental information. Until recently, chronological control on these deposits was limited to terrace stratigraphy and limited amino-acid racemisation (AAR) determinations. Recent developments in both this and optically stimulated luminescence (OSL) dating make them potentially powerful tools for improving the chronological control on such sequences. This paper reports new AAR analyses and initial OSL dating from the deposits in this region. These results will help with ongoing investigation of patterns of early human settlement.
Using AAR, the attribution by previous workers of the interglacial channel deposits to both MIS 11 (Tillingham Clay) and MIS 9 (Rochford and Shoeburyness Clays) is reinforced. Where there are direct stratigraphic relationships between AAR and OSL as with the Cudmore Grove and Rochford Clays and associated gravels, they agree well. Where OSL dating is the only technique available, it seems to replicate well, but must be treated with caution since there are relatively few aliquots. It is suggested on the basis of this initial OSL dating that the gravel deposits date from MIS 8 (Rochford and Cudmore Grove Gravels) and potentially also MIS 6 (Dammer Wick and Barling Gravels). However, the archaeological evidence from the Barling Gravel and the suggested correlations between this sequence and upstream Thames terraces conflict with this latter age estimate and suggest that it may need more investigation
Poikilocytosis of Angora goats is associated with erythrocyte density and reticulocytosis
Angora goats in South Africa experience several syndromes that result in notable morbidity and mortality in juveniles and adults,
but not kids. Insight into their causes is hampered by the lack of normal reference values for this breed, and the present study
therefore aimed to characterise (1) differences in the haematology of healthy kids at birth and weaning, and (2) the haematology
of apparently healthy yearlings. Selected variables were measured by blood smear analysis, and complete blood counts were
performed using an ADVIA 2120i. Variables at 1, 11, and 20 weeks of age were compared using the Friedman test and associations
between variables of yearlings were determined by correlation analysis. In kids, red blood cell count, mean corpuscular
haemoglobin concentration (MCHC), and poikilocytosis increased over time, while mean corpuscular haemoglobin (MCH) and
mean corpuscular volume (MCV) decreased. Yearlings displayed a lower MCHC, and higher haemoglobin distribution width than
previously reported for goats, and these were positively correlated with poikilocytosis, as were reticulocyte counts. White cell
counts of yearlings exceeded normal values previously reported for goats, with some individuals displaying remarkably high
mature neutrophil counts. Changes in haemoglobin variant expression or cation and water fluxes are possible explanations for the
findings in kids, while in yearlings, the associations between MCHC, HDW, poikilocytosis, and reticulocytosis suggest alterations in
red cell hydration in adulthood that are associated with increased red cell turnover. These findings may prove informative in the
further investigation of various clinical syndromes in this population.The South African Medical Research Council (SAMRC) Centre for Tuberculosis Research; The Harry Crossley Foundation; The Faculty of Medicine and Health Sciences Undergraduate Research Project Fund of Stellenbosch University.http://www.jsava.co.zaam2024Companion Animal Clinical StudiesSDG-03:Good heatlh and well-bein
Geographical and climatic limits of needle types of one- and two-needled pinyon pines
Aim The geographical extent and climatic tolerances of one- and two-needled pinyon pines (Pinus subsect. Cembroides) are the focus of questions in taxonomy, palaeoclimatology and modelling of future distributions. The identification of these pines, traditionally classified by one- versus two-needled fascicles, is complicated by populations with both one- and two-needled fascicles on the same tree, and the description of two more recently described one-needled varieties: the fallax-type and californiarum-type. Because previous studies have suggested correlations between needle anatomy and climate, including anatomical plasticity reflecting annual precipitation, we approached this study at the level of the anatomy of individual pine needles rather than species.
Location Western North America.
Methods We synthesized available and new data from field and herbarium collections of needles to compile maps of their current distributions across western North America. Annual frequencies of needle types were compared with local precipitation histories for some stands. Historical North American climates were modeled on a c. 1-km grid using monthly temperature and precipitation values. A geospatial model (ClimLim), which analyses the effect of climate modulated physiological and ecosystem processes, was used to rank the importance of seasonal climate variables in limiting the distributions of anatomical needle types.
Results The pinyon needles were classified into four distinct types based upon the number of needles per fascicle, needle thickness and the number of stomatal rows and resin canals. The individual needles fit well into four categories of needle types, whereas some trees exhibit a mixture of two needle types. Trees from central Arizona containing a mixture of Pinus edulis and fallax-type needles increased their percentage of fallax-type needles following dry years. All four needle types occupy broader geographical regions with distinctive precipitation regimes. Pinus monophylla and californiarum-type needles occur in regions with high winter precipitation. Pinus edulis and fallax-type needles are found in regions with high monsoon precipitation. Areas supporting californiarum-type and fallax-type needle distributions are additionally characterized by a more extreme May–June drought.
Main conclusions These pinyon needle types seem to reflect the amount and seasonality of precipitation. The single needle fascicle characterizing the fallax type may be an adaptation to early summer or periodic drought, while the single needle of Pinus monophylla may be an adaptation to summer–autumn drought. Although the needles fit into four distinct categories, the parent trees are sometimes less easily classified, especially near their ancestral Pleistocene ranges in the Mojave and northern Sonoran deserts. The abundance of trees with both one- and two-needled fascicles in the zones between P. monophylla, P. edulis and fallax-type populations suggest that needle fascicle number is an unreliable characteristic for species classification. Disregarding needle fascicle number, the fallax-type needles are nearly identical to P. edulis, supporting Little’s (1968) initial classification of these trees as P. edulis var. fallax, while the californiarum-type needles have a distinctive morphology supporting Bailey’s (1987) classification of this tree as Pinus californiarum
Topology and correlations in structured scale-free networks
We study a recently introduced class of scale-free networks showing a high
clustering coefficient and non-trivial connectivity correlations. We find that
the connectivity probability distribution strongly depends on the fine details
of the model. We solve exactly the case of low average connectivity, providing
also exact expressions for the clustering and degree correlation functions. The
model also exhibits a lack of small world properties in the whole parameters
range. We discuss the physical properties of these networks in the light of the
present detailed analysis.Comment: 10 pages, 9 figure
Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of mycobacterium tuberculosis Beijing isolates
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Preembryo Personhood: An Assessment of the President’s Council Arguments
The President’s Council on Bioethics has addressed the moral status of human preembryos in its reports on stem cell research and human therapeutic cloning. Although the Council has been criticized for being hand-picked to favor the right-to-life viewpoint concerning human preembryos, it has embraced the idea that the right-to-life position should be defended in secular terms. This is an important feature of the Council’s work, and it demonstrates a recognition of the need for genuine engagement between opposing sides in the debate over stem cell research. To promote this engagement, the Council has stated in secular terms several arguments for the personhood of human preembryos. This essay presents and critiques those arguments, and it concludes that they are unsuccessful. If the best arguments in support of the personhood of human preembryos have been presented by the Council, then there are no reasonable secular arguments in support of that view
Multipolar Reactive DPD: A Novel Tool for Spatially Resolved Systems Biology
This article reports about a novel extension of dissipative particle dynamics
(DPD) that allows the study of the collective dynamics of complex chemical and
structural systems in a spatially resolved manner with a combinatorially
complex variety of different system constituents. We show that introducing
multipolar interactions between particles leads to extended membrane structures
emerging in a self-organized manner and exhibiting both the necessary
mechanical stability for transport and fluidity so as to provide a
two-dimensional self-organizing dynamic reaction environment for kinetic
studies in the context of cell biology. We further show that the emergent
dynamics of extended membrane bound objects is in accordance with scaling laws
imposed by physics.Comment: submitted to CMSB 0
- …