11,543 research outputs found
The environmental analysis of helicopter operations by Federal agencies: Current procedures and research needs
The technical, economic, and environmental problems restricting commercial helicopter passenger operations are reviewed. The key considerations for effective assessment procedures are outlined and a preliminary model for the environmental analysis of helicopters is developed. It is recommended that this model, or some similar approach, be used as a common base for the development of comprehensive environmental assessment methods for each of the federal agencies concerned with helicopters. A description of the critical environmental research issues applicable to helicopters is also presented
Wear and Friction Modeling on Lifeboat Launch Systems
The RNLI provides search and rescue cover along the UK and RoI coast using a variety of lifeboats
and launch techniques. In locations where there is no natural harbour it is necessary to use a slipway
to launch the lifeboat into the sea. Lifeboat slipway stations consist of an initial section where the
boat is held on rollers followed by an inclined keelway lined with low friction composite materials,
the lifeboat is released from the top of the slipway and proceeds under its own weight into the water.
The lifeboat is later recovered using a winch line. It is common to manually apply grease to the
composite slipway lining before each launch and recovery in order to ensure sufficiently low friction
for successful operation. With the introduction of the Tamar class lifeboat it is necessary to upgrade
existing boathouses and standardise slipway operational procedures to ensure consistent operation.
The higher contact pressures associated with the new lifeboat have led to issues of high friction and
wear on the composite slipway linings and the manual application of grease to reduce friction is to be
restricted due to environmental impact and cost factors. This paper presents a multidisciplinary
approach to modelling slipway panel wear and friction using tribometer testing in conjunction with
finite element analysis and slipway condition surveys to incorporate common real-world effects such
as panel misalignments. Finally, it is shown that a freshwater lubrication system is effective,
reducing cost and environmental impacts while maintaining good friction and wear performance
The Middlesex University rehabilitation robot
This paper outlines the historical developments of Wheelchair-Mounted Robot Arms (WMRA's) and then focuses on the ongoing research at Middlesex to develop a low-cost aid to daily living for users with high-level quadriplegia. A detailed review is given explaining the design specification. It describes the construction of the robotic device and its control architecture. The prototype robot used several gesture recognition and other input systems.
The prototype has been tested on disabled and non-disabled users with positive feedback. They observed that it was easy to use, but issues about speed of operation were resolved after further development. The robot has a payload of greater than 1kg with a maximum reach of 0.7–0.9m.
Published by the Taylor & Francis Publishing Group, this publication is one of the only journals to cover the multi-disciplinary area of medical technology research.
Currently, research bids are being formulated with the School of Computing Science to continue this research
The Extent and Cause of the Pre-White Dwarf Instability Strip
One of the least understood aspects of white dwarf evolution is the process
by which they are formed. We are aided, however, by the fact that many H- and
He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators.
Pulsations in PWDs provide a unique opportunity to probe their interiors, which
are otherwise inaccesible to direct observation. Until now, however, the nature
of the pulsation mechanism, the precise boundaries of the instability strip,
and the mass distribution of the PWDs were complete mysteries. These problems
must be addressed before we can apply knowledge of pulsating PWDs to improve
understanding of white dwarf formation. This paper lays the groundwork for
future theoretical investigations of these stars. In recent years, Whole Earth
Telescope observations led to determination of mass and luminosity for the
majority of the (non-central star) PWD pulsators. With these observations, we
identify the common properties and trends PWDs exhibit as a class. We find that
pulsators of low mass have higher luminosity, suggesting the range of
instability is highly mass-dependent. The observed trend of decreasing periods
with decreasing luminosity matches a decrease in the maximum (standing-wave)
g-mode period across the instability strip. We show that the red edge can be
caused by the lengthening of the driving timescale beyond the maximum
sustainable period. This result is general for ionization-based driving
mechanisms, and it explains the mass-dependence of the red edge. The observed
form of the mass-dependence provides a vital starting point for future
theoretical investigations of the driving mechanism. We also show that the blue
edge probably remains undetected because of selection effects arising from
rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199
Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements
A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approx. 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approx. 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approx. 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition temperature superconducting thin films at microwave frequencies
Recommended from our members
Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids.
There is much interest in defining the signals that initiate abnormal proliferation of cells in a variety of states characterized by the presence of mononuclear phagocytes. Since IL-1 is a major secretory product of activated human monocytes we examined whether this cytokine can stimulate the growth of human vascular smooth muscle cells (SMC). Neither recombinant IL-1 (rIL-1) alpha (less than or equal to 5.0 ng/ml) nor beta (less than or equal to 100 ng/ml) stimulated SMC growth during 2-d incubations under usual conditions. IL-1 did stimulate SMC to produce prostanoids such as PGE1 or PGE2 that can inhibit SMC proliferation. When prostaglandin synthesis was inhibited by indomethacin or aspirin both rIL-1 alpha and beta (greater than or equal to 1 ng/ml) markedly increased SMC growth. In longer-term experiments (7-28 d) rIL-1 stimulated the growth of SMC even in the absence of cyclooxygenase inhibitors. The addition of exogenous PGE1 or PGE2 (but not PGF1 alpha, PGF2 alpha, PGI2) to indomethacin-treated SMC blocked their mitogenic response to rIL-1. Antibody to IL-1 (but not to platelet-derived growth factor [PDGF]) abolished the mitogenic response of SMC to rIL-1. Exposure of SMC to rIL-1 or PDGF caused rapid (maximal at 1 h) and transient (baseline by 3 h) expression of the c-fos proto-oncogene, determined by Northern analysis. We conclude that IL-1 is a potent mitogen for human SMC. Endogenous prostanoid production simultaneously induced by IL-1 appears to antagonize this growth-promoting effect in the short term (2 d) but not during more prolonged exposures. IL-1 produced by activated monocytes at sites of tissue inflammation or injury may thus mediate both positive and negative effects on SMC proliferation that are temporally distinct
Recommended from our members
Immune interferon inhibits proliferation and induces 2'-5'-oligoadenylate synthetase gene expression in human vascular smooth muscle cells.
Proliferation of vascular smooth muscle cells (SMC) contributes to formation of the complicated human atherosclerotic plaque. These lesions also contain macrophages, known to secrete SMC mitogens, and T lymphocytes. Many of the SMC in the lesions express class II major histocompatibility antigens, an indication that activated T cells secrete immune IFN-gamma locally in the plaque. We therefore studied the effect of IFN-gamma on the proliferation of cultured SMC derived from adult human blood vessels. IFN-gamma (1,000 U/ml) reduced [3H]thymidine (TdR) incorporation into DNA by SMC stimulated with the well-defined mitogens IL 1 (from 15.3 +/- 0.7 to 6.2 +/- 0.7 dpm X 10(-3)/24 h) or platelet-derived growth factor (PDGF) (from 18.5 +/- 1.0 to 7.3 +/- 0.7 dpm X 10(-3)/24 h). Kinetic and nuclear labeling studies indicated that this effect of IFN-gamma was not due to altered thymidine transport or specific radioactivity of TdR in the cell. In longer term experiments (4-16 d) IFN-gamma prevented net DNA accumulation by SMC cultures stimulated by PDGF. IFN-gamma also delayed (from 30 to 60 min) the time to peak level of c-fos RNA in IL 1-treated SMC. It is unlikely that cytotoxicity caused these effects of IFN-gamma, as the inhibition of growth was reversible and we detected no cell death in SMC cultures exposed to this cytokine. Activation of 2'-5' oligoadenylate synthetase gene expression may mediate certain antiproliferative and antiviral effects of interferons. Both IFN-gamma and type I IFNs (IFN-alpha or IFN-beta) induced 2'-5' oligoadenylate synthetase mRNA and enzyme activity in SMC cultures, but with concentration dependence and time course that may not account for all of IFN-gamma's cytostatic effect on SMC. The accumulation of SMC in human atherosclerotic lesions is a long-term process that must involve altered balance between growth stimulatory and inhibitory factors. The cytostatic effect of IFN-gamma on human SMC demonstrated here may influence this balance during human atherogenesis, because T cells present in the complicated atherosclerotic plaque likely produce this cytokine
- …