49 research outputs found

    Facet-, composition- and wavelength-dependent photocatalysis of Ag2_{2}MoO4_{4}

    Get PDF
    Faceted β\beta-Ag2_{2}MoO4_{4} microcrystals are prepared by controlled nucleation and growth in diethylene glycol (DEG) or dimethylsulfoxide (DMSO). Both serve as solvents for the liquid-phase synthesis and surface-active agents for the formation of faceted microcrystals. Due to its reducing properties, truncated β\beta-Ag2_{2}MoO4_{4}@Ag octahedra are obtained in DEG. The synthesis in DMSO allows avoiding the formation of elemental silver and results in β\beta-Ag2_{2}MoO4_{4} cubes and cuboctahedra. Due to its band gap of 3.2 eV, photocatalytic activation of β\beta-Ag2_{2}MoO4_{4} is only possible under UV-light. To enable β\beta-Ag2_{2}MoO4_{4} for absorption of visible light, silver-coated β\beta-Ag2_{2}MoO4_{4}@Ag and Ag2_{2}(Mo0.95_{0.95}Cr0.05_{0.05})O4_{4} with partial substitution of [MoO4]2−^{2-} by [CrO4]2−^{2-} were prepared, too. The photocatalytic activity of all the faceted microcrystals (truncated octahedra, cubes, cuboctahedra) and compositions (β\beta-Ag2_{2}MoO4_{4}, β\beta-Ag2_{2}MoO4_{4}@Ag, β\beta-Ag2_{2}(Mo0.95_{0.95}Cr0.05_{0.05})O4_{4}) is compared with regard to the photocatalytic decomposition of rhodamine B and the influence of the respective faceting, composition and wavelength

    Coronal Conditions for the Occurrence of Type II Radio Bursts

    Get PDF
    Type II radio bursts are generally observed in association with flare-generated or coronal-mass-ejection-driven shock waves. The exact shock and coronal conditions necessary for the production of type II radio emission are still under debate. Shock waves are important for the acceleration of electrons necessary for the generation of the radio emission. Additionally, the shock geometry and closed field line topology, e.g., quasi-perpendicular shock regions or shocks interacting with streamers, play an important role for the production of the emission. In this study we perform a 3D reconstruction and modeling of a shock wave observed during the 2014 November 5 solar event. We determine the spatial and temporal evolution of the shock properties and examine the conditions responsible for the generation and evolution of type II radio emission. Our results suggest that the formation and evolution of a strong, supercritical, quasi-perpendicular shock wave interacting with a coronal streamer were responsible for producing type II radio emission. We find that the shock wave is subcritical before and supercritical after the start of the type II emission. The shock geometry is mostly quasi-perpendicular throughout the event. Our analysis shows that the radio emission is produced in regions where the supercritical shock develops with an oblique to quasi-perpendicular geometry

    Large Process Models: Business Process Management in the Age of Generative AI

    Full text link
    The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the concept of a Large Process Model (LPM) that combines the correlation power of LLMs with the analytical precision and reliability of knowledge-based systems and automated reasoning approaches. LPMs are envisioned to directly utilize the wealth of process management experience that experts have accumulated, as well as process performance data of organizations with diverse characteristics, e.g., regarding size, region, or industry. In this vision, the proposed LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations. As such, they would allow to substantially decrease the time and effort required for business transformation, while also allowing for deeper, more impactful, and more actionable insights than previously possible. We argue that implementing an LPM is feasible, but also highlight limitations and research challenges that need to be solved to implement particular aspects of the LPM vision

    Interferometric imaging of the type IIIb and U radio bursts observed with LOFAR on 22 August 2017

    Get PDF
    Context. The Sun is the source of different types of radio bursts that are associated with solar flares, for example. Among the most frequently observed phenomena are type III solar bursts. Their radio images at low frequencies (below 100 MHz) are relatively poorly studied due to the limitations of legacy radio telescopes.Aims. We study the general characteristics of types IIIb and U with stria structure solar radio bursts in the frequency range of 20-80 MHz, in particular the source size and evolution in different altitudes, as well as the velocity and energy of electron beams responsible for their generation.Methods. In this work types IIIb and U with stria structure radio bursts are analyzed using data from the LOFAR telescope including dynamic spectra and imaging observations, as well as data taken in the X-ray range (GOES and RHESSI satellites) and in the extreme ultraviolet (SDO satellite).Results. In this study we determined the source size limited by the actual shape of the contour at particular frequencies of type IIIb and U solar bursts in a relatively wide frequency band from 20 to 80 MHz. Two of the bursts seem to appear at roughly the same place in the studied active region and their source sizes are similar. It is different in the case of another burst, which seems to be related to another part of the magnetic field structure in this active region. The velocities of the electron beams responsible for the generation of the three bursts studied here were also found to be different.Peer reviewe

    Studies on the Utilization of Sugar Beet Leaves as the Rock-Horn Cockerels Green Feed

    Get PDF
    Purpose: To compare event-free survival (EFS), overall survival (OS), pattern of relapse, and hearing loss in children with standard-risk medulloblastoma treated by postoperative hyperfractionated or conventionally fractionated radiotherapy followed by maintenance chemotherapy. Patients and Methods: In all, 340 children age 4 to 21 years from 122 European centers were postoperatively staged and randomly assigned to treatment with hyperfractionated radiotherapy (HFRT) or standard (conventional) fractionated radiotherapy (STRT) followed by a common chemotherapy regimen consisting of eight cycles of cisplatin, lomustine, and vincristine. Results: After a median follow-up of 4.8 years (range, 0.1 to 8.3 years), survival rates were not significantly different between the two treatment arms: 5-year EFS was 77% ± 4% in the STRT group and 78% ± 4% in the HFRT group; corresponding 5-year OS was 87% ± 3% and 85% ± 3%, respectively. A postoperative residual tumor of more than 1.5 cm2 was the strongest negative prognostic factor. EFS of children with all reference assessments and no large residual tumor was 82% ± 2% at 5 years. Patients with a delay of more than 7 weeks to the start of RT had a worse prognosis. Severe hearing loss was not significantly different for the two treatment arms at follow-up. Conclusion: In this large randomized European study, which enrolled patients with standard-risk medulloblastoma from more than 100 centers, excellent survival rates were achieved in patients without a large postoperative residual tumor and without RT treatment delays. EFS and OS for HFRT was not superior to STRT, which therefore remains standard of care in this disease

    The Solar Particle Acceleration Radiation and Kinetics (SPARK) mission concept

    Get PDF
    Particle acceleration is a fundamental process arising in many astrophysical objects, including active galactic nuclei, black holes, neutron stars, gamma-ray bursts, accretion disks, solar and stellar coronae, and planetary magnetospheres. Its ubiquity means energetic particles permeate the Universe and influence the conditions for the emergence and continuation of life. In our solar system, the Sun is the most energetic particle accelerator, and its proximity makes it a unique laboratory in which to explore astrophysical particle acceleration. However, despite its importance, the physics underlying solar particle acceleration remain poorly understood. The SPARK mission will reveal new discoveries about particle acceleration through a uniquely powerful and complete combination of γ-ray, X-ray, and EUV imaging and spectroscopy at high spectral, spatial, and temporal resolutions. SPARK’s instruments will provide a step change in observational capability, enabling fundamental breakthroughs in our understanding of solar particle acceleration and the phenomena associated with it, such as the evolution of solar eruptive events. By providing essential diagnostics of the processes that drive the onset and evolution of solar flares and coronal mass ejections, SPARK will elucidate the underlying physics of space weather events that can damage satellites and power grids, disrupt telecommunications and GPS navigation, and endanger astronauts in space. The prediction of such events and the mitigation of their potential impacts are crucial in protecting our terrestrial and space-based infrastructure

    Active Learning in the Drug Discovery Process

    No full text
    We investigate the following data mining problem from Computational Chemistry: From a large data set of compounds, find those that bind to a target molecule in as few iterations of biological testing as possible. In each iteration a comparatively small batch of compounds is screened for binding to the target. We apply active learning techniques for selecting the successive batches
    corecore