42 research outputs found

    Optimal control of fractional semilinear PDEs

    Full text link
    In this paper we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2s2s with s∈(0,1)s \in (0,1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions

    A note on semilinear fractional elliptic equation: analysis and discretization

    Get PDF
    In this paper we study existence, regularity, and approximation of solution to a fractional semilinear elliptic equation of order s∈(0,1)s \in (0,1). We identify minimal conditions on the nonlinear term and the source which leads to existence of weak solutions and uniform L∞L^\infty-bound on the solutions. Next we realize the fractional Laplacian as a Dirichlet-to-Neumann map via the Caffarelli-Silvestre extension. We introduce a first-degree tensor product finite elements space to approximate the truncated problem. We derive a priori error estimates and conclude with an illustrative numerical example

    External optimal control of fractional parabolic PDEs

    Full text link
    In this paper we introduce a new notion of optimal control, or source identification in inverse, problems with fractional parabolic PDEs as constraints. This new notion allows a source/control placement outside the domain where the PDE is fulfilled. We tackle the Dirichlet, the Neumann and the Robin cases. For the fractional elliptic PDEs this has been recently investigated by the authors in \cite{HAntil_RKhatri_MWarma_2018a}. The need for these novel optimal control concepts stems from the fact that the classical PDE models only allow placing the source/control either on the boundary or in the interior where the PDE is satisfied. However, the nonlocal behavior of the fractional operator now allows placing the control in the exterior. We introduce the notions of weak and very-weak solutions to the parabolic Dirichlet problem. We present an approach on how to approximate the parabolic Dirichlet solutions by the parabolic Robin solutions (with convergence rates). A complete analysis for the Dirichlet and Robin optimal control problems has been discussed. The numerical examples confirm our theoretical findings and further illustrate the potential benefits of nonlocal models over the local ones.Comment: arXiv admin note: text overlap with arXiv:1811.0451
    corecore