404 research outputs found

    An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes

    Full text link
    © 2017 Mohsen Asadnia et al. By combining particle swarm optimization (PSO) and genetic algorithms (GA) this paper offers an innovative algorithm to train artificial neural networks (ANNs) for the purpose of calculating the experimental growth parameters of CNTs. The paper explores experimentally obtaining data to train ANNs, as a method to reduce simulation time while ensuring the precision of formal physics models. The results are compared with conventional particle swarm optimization based neural network (CPSONN) and Levenberg-Marquardt (LM) techniques. The results show that PSOGANN can be successfully utilized for modeling the experimental parameters that are critical for the growth of CNTs

    New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption.

    Full text link
    Inertial microfluidics represents a powerful new tool for accurately positioning cells and microparticles within fluids for a variety of biomedical, clinical, and industrial applications. In spite of enormous advancements in the science and design of these devices, particularly in curved microfluidic channels, contradictory experimental results have confounded researchers and limited progress. Thus, at present, a complete theory which describes the underlying physics is lacking. We propose that this bottleneck is due to one simple mistaken assumption-the locations of inflection points of the Dean velocity profile in curved microchannels are not fixed, but can actually shift with the flow rate. Herein, we propose that the dynamic distance (δ) between the real equilibrium positions and their nearest inflection points can clearly explain several (previously) unexplained phenomena in inertial microfluidic systems. More interestingly, we found that this parameter, δ, is a function of several geometric and operational parameters, all of which are investigated (in detail) here with a series of experiments and simulations of different spiral microchannels. This key piece of understanding is expected to open the door for researchers to develop new and more effective inertial microfluidic designs

    The use of microfluidic technology for cancer applications and liquid biopsy

    Full text link
    © 2018 by the authors. There is growing awareness for the need of early diagnostic tools to aid in point-of-care testing in cancer. Tumor biopsy remains the conventional means in which to sample a tumor and often presents with challenges and associated risks. Therefore, alternative sources of tumor biomarkers is needed. Liquid biopsy has gained attention due to its non-invasive sampling of tumor tissue and ability to serially assess disease via a simple blood draw over the course of treatment. Among the leading technologies developing liquid biopsy solutions, microfluidics has recently come to the fore. Microfluidic platforms offer cellular separation and analysis platforms that allow for high throughout, high sensitivity and specificity, low sample volumes and reagent costs and precise liquid controlling capabilities. These characteristics make microfluidic technology a promising tool in separating and analyzing circulating tumor biomarkers for diagnosis, prognosis and monitoring. In this review, the characteristics of three kinds of circulating tumor markers will be described in the context of cancer, circulating tumor cells (CTCs), exosomes, and circulating tumor DNA (ctDNA). The review will focus on how the introduction of microfluidic technologies has improved the separation and analysis of these circulating tumor markers

    Membrane-less microfiltration using inertial microfluidics

    Get PDF
    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstrated the systems engineered for CHO (10–20 μm) and yeast (3–5 μm) cells filtration, which are two main cell types used for large-scale bioreactors. Our proposed system can replace existing filtration membrane and provide passive (no external force fields), continuous filtration, thus eliminating the need for membrane replacement. This platform has the desirable combinations of high throughput, low-cost, and scalability, making it compatible for a myriad of microfiltration applications and industrial purposes.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology)United States. Advanced Research Projects Agency-Energy (Grant DE-AR0000294

    Melanoma circulating tumor cells: Benefits and challenges required for clinical application

    Full text link
    © 2018 The implementation of novel therapeutic interventions has improved the survival rates of melanoma patients with metastatic disease. Nonetheless, only 33% of treated cases exhibit long term responses. Circulating tumor cell (CTC) measurements are currently of clinical value in breast, prostate and colorectal cancers. However, the clinical utility of melanoma CTCs (MelCTCs) is still unclear due to challenges that appear intrinsic to MelCTCs (i.e. rarity, heterogeneity) and a lack of standardization in their isolation, across research laboratories. Here, we review the latest developments, pinpoint the challenges in MelCTC isolation and address their potential role in melanoma management

    Phenotypic Characterization of Circulating Lung Cancer Cells for Clinically Actionable Targets.

    Full text link
    OBJECTIVES:In non-small cell lung cancers (NSCLC), tumour biopsy can often be an invasive procedure. The development of a non-invasive methodology to study genetic changes via circulating tumour cells (CTCs) is an appealing concept. Whilst CTCs typically remain as rare cells, improvements in epitope-independent CTC isolation techniques has given rise to a greater capture of CTCs. In this cross sectional study, we demonstrate the capture and characterization of NSCLC CTCs for the clinically actionable markers epidermal growth factor receptor (EGFR) alterations, anaplastic lymphoma kinase (ALK) rearrangements and programmed death ligand-1 (PD-L1) expression. The study identified CTCs/CTC clusters in 26/35 Stage IV NSCLC patients, and subsequently characterized the CTCs for EGFR mutation, ALK status and PD-L1 status. This pilot study demonstrates the potential of a non-invasive fluid biopsy to determine clinically relevant biomarkers in NSCLC

    Experimental and numerical study of elasto-inertial focusing in straight channels.

    Full text link
    Elasto-inertial microfluidics has drawn significant attention in recent years due to its enhanced capabilities compared to pure inertial systems in control of small microparticles. Previous investigations have focused mainly on the applications of elasto-inertial sorting, rather than studying its fundamentals. This is because of the complexity of simulation and analysis, due to the presence of viscoelastic force. There have been some investigative efforts on the mechanisms of elasto-inertial focusing in straight channels; however, these studies were limited to simple rectangular channels and neglected the effects of geometry and flow rates on focusing positions. Herein, for the first time, we experimentally and numerically explore the effects of elasticity accompanying channel cross-sectional geometry and sample flow rates on the focusing phenomenon in elasto-inertial systems. The results reveal that increasing the aspect ratio weakens the elastic force more than inertial force, causing a transition from one focusing position to two. In addition, they show that increasing the angle of a channel corner causes the elastic force to push the particles more efficiently toward the center over a larger area of the channel cross section. Following on from this, we proposed a new complex straight channel which demonstrates a tighter focusing band compared to other channel geometries. Finally, we focused Saccharomyces cerevisiae cells (3-5 μm) in the complex channel to showcase its capability in focusing small-size particles. We believe that this research work improves the understanding of focusing mechanisms in viscoelastic solutions and provides useful insights into the design of elasto-inertial microfluidic devices

    IEEE Access Special Section Editorial: Wearable and Implantable Devices and Systems

    Get PDF
    © 2013 IEEE. Circuit techniques, sensors, antennas and communications systems are envisioned to help build new technologies over the next several years. Advances in the development and implementation of such technologies have already shown us their unique potential in realizing next-generation sensing systems. Applications include wearable consumer electronics, healthcare monitoring systems, and soft robotics, as well as wireless implants. There have been some interesting developments in the areas of circuits and systems, involving studies related to low-power electronics, wireless sensor networks, wearable circuit behaviour, security, real-time monitoring, connectivity of sensors, and Internet of Things (IoT). The direction for the current technology is electronics systems on large area electronics, integrated implantable systems and wearable sensors. So far, the research in the field has focused on materials, new processing techniques and one-off devices, such as diodes and transistors. However, current technology is not sufficient for future electronics to be useful in new applications; a great demand exists to scale up the research towards circuits and systems. Recent developments indicate that, in addition to fabrication technology, special attention should also be given to design, simulation and modeling of electronics, while keeping sensing system integration, power management, and sensors network under consideration

    Development of a Biomimetic Semicircular Canal with MEMS Sensors to Restore Balance

    Full text link
    © 2001-2012 IEEE. A third of adults over the age of 50 suffer from chronic impairment of balance, posture, and/or gaze stability due to partial or complete impairment of the sensory cells in the inner ear responsible for these functions. The consequences of impaired balance organ can be dizziness, social withdrawal, and acceleration of the further functional decline. Despite the significant progress in biomedical sensing technologies, current artificial vestibular systems fail to function in practical situations and in very low frequencies. Herein, we introduced a novel biomechanical device that closely mimics the human vestibular system. A microelectromechanical systems (MEMS) flow sensor was first developed to mimic the vestibular haircell sensors. The sensor was then embedded into a three-dimensional (3D) printed semicircular canal and tested at various angular accelerations in the frequency range from 0.5Hz to 1.5Hz. The miniaturized device embedded into a 3D printed model will respond to mechanical deflections and essentially restore the sense of balance in patients with vestibular dysfunctions. The experimental and simulation studies of semicircular canal presented in this work will pave the way for the development of balance sensory system, which could lead to the design of a low-cost and commercially viable medical device with significant health benefits and economic potential
    corecore