132 research outputs found

    Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability

    Get PDF
    There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability states, which has the potential to provide valuable information regarding BBB integrity in a range of diseases. However, absolute values of the resulting tracer kinetic parameters should be interpreted with extreme caution, and the size and influence of signal drift should be measured where possible

    Examining the relationship between semiquantitative methods analysing concentration-time and enhancement-time curves from dynamic-contrast enhanced magnetic resonance imaging and cerebrovascular dysfunction in small vessel disease

    Get PDF
    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to examine the distribution of an intravenous contrast agent within the brain. Computational methods have been devised to analyse the contrast uptake/washout over time as reflections of cerebrovascular dysfunction. However, there have been few direct comparisons of their relative strengths and weaknesses. In this paper, we compare five semiquantitative methods comprising the slope and area under the enhancement-time curve, the slope and area under the concentration-time curve ( SlopeCon and AUCCon ), and changes in the power spectrum over time. We studied them in cerebrospinal fluid, normal tissues, stroke lesions, and white matter hyperintensities (WMH) using DCE-MRI scans from a cohort of patients with small vessel disease (SVD) who presented mild stroke. The total SVD score was associated with AUCCon in WMH ( p0.05 ) and WMH burden ( p>0.05 ). Our results show the potential of different measures extracted from concentration-time curves extracted from the same DCE examination to demonstrate cerebrovascular dysfunction better than those extracted from enhancement-time curves

    Metric to quantify white matter damage on brain magnetic resonance images

    Get PDF
    PURPOSE: Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. METHODS: We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. RESULTS: The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p  =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. CONCLUSION: The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white matter damage

    Brain choline concentration: early quantitative marker of ischemia and infarct expansion?

    Get PDF
    Objective: Better prediction of tissue prognosis in acute stroke might improve treatment decisions. We hypothesized that there are metabolic ischemic disturbances measurable non-invasively by proton MR spectroscopy (1HMRS) that occur earlier than any structural changes visible on diffusion tensor imaging (DTI), which may therefore serve for territorial identification of “tissue at risk”. Methods: We performed multi-voxel 1HMRS plus DTI within a maximum of 26 hours, and DTI at three-seven days, after ischemic stroke. We compared choline, lactate, NAA, creatine concentrations in normal-appearing voxels that became infarcted("infarct expansion”), with normal-appearing voxels around the infarct that remained “healthy”(“non-expansion”) on follow-up DTI. Each “infarct expansion” voxel was additionally classified as either “complete infarct expansion”(infarcted tissue on follow-up DTI covered ≄50% of the voxel) or “partial infarct expansion”(<50% of voxel). Results: In 31 patients (NIHSS:0–28) there were 108 infarct "non-expansion” voxels and 113 infarct "expansion” voxels (of which 80 were “complete expansion” and 33 “partial expansion” voxels). Brain choline concentration increased for each change in expansion category from "non-expansion", via "partial expansion" to "complete expansion" (2423, 3843, 4158i.u.; p<0.05). Changes in lactate, NAA and creatine concentrations in expansion category were insignificant although for lactate there was a tendency to such association. Conclusions: Choline concentration measurable with 1HMRS was elevated in peri-ischemic normal-appearing brain that became infarcted by three-seven days. The degree of elevation was associated with the amount of infarct expansion. 1HMRS might identify DTI-normal appearing tissue at risk of conversion to infarction in early stroke

    Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age

    Get PDF
    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration

    Lacunar stroke lesion extent and location and white matter hyperintensities evolution 1 year post-lacunar stroke

    Get PDF
    Lacunar strokes are a common type of ischemic stroke. They are associated with long-term disability, but the factors affecting the dynamic of the infarcted lesion and the brain imaging features associated with them, reflective of small vessel disease (SVD) severity, are still largely unknown. We investigated whether the distribution, volume and 1-year evolution of white matter hyperintensities (WMH), one of these SVD features, relate to the extent and location of these infarcts, accounting for vascular risk factors. We used imaging and clinical data from all patients [n = 118, mean age 64.9 (SD 11.75) years old] who presented to a regional hospital with a lacunar stroke syndrome within the years 2010 and 2013 and consented to participate in a study of stroke mechanisms. All patients had a brain MRI scan at presentation, and 88 had another scan 12 months after. Acute lesions (i.e., recent small subcortical infarcts, RSSI) were identified in 79 patients and lacunes in 77. Number of lacunes was associated with baseline WMH volume (B = 0.370, SE = 0.0939, P = 0.000174). RSSI volume was not associated with baseline WMH volume (B = 3.250, SE = 2.117, P = 0.129), but predicted WMH volume change (B = 2.944, SE = 0.913, P = 0.00184). RSSI location was associated with the spatial distribution of WMH and the pattern of 1-year WMH evolution. Patients with the RSSI in the centrum semiovale (n = 33) had significantly higher baseline volumes of WMH, recent and old infarcts, than patients with the RSSI located elsewhere [median 33.69, IQR (14.37 50.87) ml, 0.001 ≀ P ≀ 0.044]. But patients with the RSSI in the internal/external capsule/lentiform nucleus experienced higher increase of WMH volume after a year [n = 21, median (IQR) from 18 (11.70 31.54) ml to 27.41 (15.84 40.45) ml]. Voxel-wise analyses of WMH distribution in patients grouped per RSSI location revealed group differences increased in the presence of vascular risk factors, especially hypertension and recent or current smoking habit. In our sample of patients presenting to the clinic with lacunar strokes, lacunar strokes extent influenced WMH volume fate; and RSSI location and WMH spatial distribution and dynamics were intertwined, with differential patterns emerging in the presence of vascular risk factors. These results, if confirmed in wider samples, open potential avenues in stroke rehabilitation to be explored further

    Sex-Dependent Effects of Cardiometabolic Health and APOE4 on Brain Age: A Longitudinal Cohort Study.

    Get PDF
    The aging population is growing faster than all other demographic strata. With older age comes a greater risk of health conditions such as obesity and high blood pressure (BP). These cardiometabolic risk factors (CMRs) exhibit prominent sex differences in midlife and aging, yet their influence on brain health in females vs males is largely unexplored. In this study, we investigated sex differences in relationships between BP, body mass index (BMI), and brain age over time and tested for interactions with APOE Δ4 genotype (APOE4), a known genetic risk factor of Alzheimer disease. The sample included participants from 2 United Kingdom-based longitudinal birth cohorts, the Lothian Birth Cohort (1936) and Insight 46 (1946). Participants with MRI data from at least 1 time point were included to evaluate sex differences in associations between CMRs and brain age. The open-access software package brainageR 2.1 was used to estimate brain age for each participant. Linear mixed-effects models were used to assess the relationships between brain age, BMI, BP, and APOE4 status (i.e., carrier vs noncarrier) in males and females over time. The combined sample comprised 1,120 participants (48% female) with a mean age (SD) of 73 (0.72) years in the Lothian Birth Cohort and 71 (0.68) years in Insight 46 at the time point 1 assessment. Approximately 30% of participants were APOE4 carriers. Higher systolic and diastolic BP was significantly associated with older brain age in females only (ÎČ = 0.43-0.56, p &lt; 0.05). Among males, higher BMI was associated with older brain age across time points and APOE4 groups (ÎČ = 0.72-0.77, p &lt; 0.05). In females, higher BMI was linked to older brain age among APOE4 noncarriers (ÎČ = 0.68-0.99, p &lt; 0.05), whereas higher BMI was linked to younger brain age among carriers, particularly at the last time point (ÎČ = -1.75, p &lt; 0.05). This study indicates sex-dependent and time-dependent relationships between CMRs, APOE4 status, and brain age. Our findings highlight the necessity of sex-stratified analyses to elucidate the role of CMRs in individual aging trajectories, providing a basis for developing personalized preventive interventions

    A four-dimensional computational model of dynamic contrast-enhanced magnetic resonance imaging measurement of subtle blood-brain barrier leakage

    Get PDF
    Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and dementia. However, the subtle nature of leakage and resulting small signal changes make quantification challenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model assumptions, the impact of spatio-temporal effects such as gross motion, k-space sampling and motion artefacts on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, extra-cerebral signals, noise and k-space sampling. Simulations using the DROs demonstrated a dominant influence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future studies
    • 

    corecore