195 research outputs found

    Fission modes of mercury isotopes

    Full text link
    Background: Recent experiments on beta-delayed fission in the mercury-lead region and the discovery of asym- metric fission in 180 Hg [1] have stimulated theoretical interest in the mechanism of fission in heavy nuclei. Purpose: We study fission modes and fusion valleys in 180 Hg and 198 Hg to reveal the role of shell effects in pre-scission region and explain the experimentally observed fragment mass asymmetry and its variation with A. Methods: We use the self-consistent nuclear density functional theory employing Skyrme and Gogny energy density functionals. Results: The potential energy surfaces in multi-dimensional space of collective coordinates, including elongation, triaxiality, reflection-asymmetry, and necking, are calculated for 180 Hg and 198 Hg. The asymmetric fission valleys - well separated from fusion valleys associated with nearly spherical fragments - are found in in both cases. The density distributions at scission configurations are studied and related to the experimentally observed mass splits. Conclusions: The energy density functionals SkM\ast and D1S give a very consistent description of the fission process in 180 Hg and 198 Hg. We predict a transition from asymmetric fission in 180 Hg towards more symmetric distribution of fission fragments in 198 Hg. For 180 Hg, both models yield 100 Ru/80 Kr as the most probable split. For 198 Hg, the most likely split is 108 Ru/90 Kr in HFB-D1S and 110 Ru/88 Kr in HFB-SkM\ast.Comment: 6 pages, 5 figures, to be published in Physical Review

    Why NERICA is a successful innovation for African farmers

    Get PDF
    This paper responds to ‘Funding international agricultural research and the need to be noticed: a case study of NERICA rice’ by Stuart Orr, James Sumberg, Olaf Erenstein and Andreas Oswald, published in this issue of Outlook on Agriculture. In summary, the article by Orr et al, based on an internal WARDA document written in November 2003 and augmented with results from Internet searches, is outdated and does not seem to be fair, objective or useful. We invite the authors to visit WARDA or any of its partners in Sub-Saharan Africa for evidence of the impact of NERICA varieties or the other improved varieties and technologies that have been developed and disseminated by WARDA in recent years

    Diagnostic value of MRI for predicting axillary lymph nodes metastasis in newly diagnosed breast cancer patients: Diffusion-weighted MRI

    Get PDF
    AbstractObjectiveNon-invasive preoperative detection of axillary nodal metastasis is beneficial for the outcome of breast cancer patients. We aimed to determine the value of DW MRI, ADC and their combination with MRI morphological criteria in detecting axillary metastasis.MethodsWe included recently diagnosed forty breast cancer patients. MRI morphological criteria, signal intensity on DWI, and ADC value were assessed and compared between metastatic and non-metastatic LNs using histopathological findings as reference standard. Sensitivity, specificity, PPV, NPV and accuracy for each variable and cutoff value of ADC were evaluated.ResultsNo statistically significant difference between metastatic and non-metastatic LNs in short axis diameter or L/S ratio (p value: 0.87 and 0.82 respectively); however, loss of fatty hilum, high signal intensity on DWI and low ADC value were significant with increasing sensitivity on their combination. The mean ADC was 0.96±0.9×10−3mm2/s for metastatic and 1.53±0.6×10−3mm2/s for benign LNs with cutoff value 1.09×10−3mm2/s and sensitivity (94.5%), specificity (93.6%), PPV (96%), NPV (94.7%) and accuracy (95.6%).ConclusionDW-MRI and ADC per se or in combination with loss of the fatty hila is a promising and supportive tool for detection of axillary LNs metastasis

    Role of the target orientation angle and orbital angular momentum in the evaporation residue production

    Full text link
    The influence of the orientation angles of the target nucleus symmetry axis relative to the beam direction on the production of the evaporation residues is investigated for the 48^{48}Ca+154^{154}Sm reaction as a function of the beam energy. At low energies (Ec.m.<E_{\rm c.m.}<137 MeV), the yield of evaporation residues is observed only for collisions with small orientation angles (αT<450\alpha_T<45^0). At large energies (about Ec.m.=E_{\rm c.m.}=140--180 MeV) all the orientation angles αT\alpha_T can contribute to the evaporation residue cross section σER\sigma_{ER} in the 10--100 mb range, and at Ec.m.>E_{c.m.}>180 MeV σER\sigma_{ER} ranges around 0.1--10 mb because the fission barrier for a compound nucleus decreases by increasing its excitation energy and angular momentum.Comment: 20 pages, 10 figures, submitted to JPS

    Fission Fragment Mass and Kinetic Energy Yields of Fermium Isotopes

    Full text link
    A rapidly converging 4-dimensional Fourier shape parametrization is used to model the fission process of heavy nuclei. Potential energy landscapes are computed within the macroscopic-microscopic approach, on top of which the multi-dimensional Langevin equation is solved to describe the fission dynamics. Charge equilibration at scission and de-excitation by neutron evaporation of the primary fragments after scission is investigated. The model describes various observables, including fission-fragment mass, charge, and kinetic energy yields, as well as post-scission neutron multiplicities and, most importantly, their correlations, which are crucial to unravel the complexity of the fission process. The parameters of the dynamical model were tuned to reproduce experimental data obtained from thermal neutron-induced fission of 235^{235}U, which allows us to discuss the transition from asymmetric to symmetric fission along the Fm isotopic chain.Comment: Presented at the Mazurian Lakes Conference on Physics, 2023, Polan

    FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    Get PDF
    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.Comment: Poster shown at HEAD 2010, Big Island, Hawaii, March 1-4, 201

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    Nuclear Skins and Halos in the Mean-Field Theory

    Full text link
    Nuclei with large neutron-to-proton ratios have neutron skins, which manifest themselves in an excess of neutrons at distances greater than the radius of the proton distribution. In addition, some drip-line nuclei develop very extended halo structures. The neutron halo is a threshold effect; it appears when the valence neutrons occupy weakly bound orbits. In this study, nuclear skins and halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov and relativistic Hartree-Bogoliubov theories for spherical shapes. It is demonstrated that skins, halos, and surface thickness can be analyzed in a model-independent way in terms of nucleonic density form factors. Such an analysis allows for defining a quantitative measure of the halo size. The systematic behavior of skins, halos, and surface thickness in even-even nuclei is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical Review
    • 

    corecore