7,529 research outputs found

    Emergent Phenomena in Spatially Confined Manganites

    Get PDF
    Rare earth manganites exhibit colossal magnetoresistance (CMR). There is evidence that alloyed single crystal materials in this class can display electronic inhomogeneity in which areas with vastly different electronic and magnetic properties can form and coexist in phase separated domains ranging in size from a few nanometers to micrometers. This phase separation (PS) is of particular interest, as it has been suggested that it is the central feature that leads to CMR in manganites, the Mott transition in VO2 and may play a role in high-TC superconductivity in cuprates. However there is debate as to its precise role. The purpose of my research is to answer fundamental questions about the specific role of PS in complex oxides. I reduce single crystal thin films of an electronically phase separated manganite to the scale of their inherent electronic phase domains near the metal-insulator transition. Unlike transport measurements done on bulk or thin films where the electrons follow only the metallic path of least resistance, this configuration forces electrons to travel through both the metallic and insulating regions residing in the material. This has led to observations of several new phenomena such as a reemergent metal-insulator transition, ultra-sharp jumps in resistivity at the metal-insulator transition, and the first high resolution observation of single domain electronic phase transitions in the time domain. While the manganites will be the primary focus throughout this dissertation, the spatial confinement techniques presented here are not limited to only these materials. They can be applied to any phase separated system to probe regions resistively hidden to transport measurements

    Inflation from Geometrical Tachyons

    Full text link
    We propose an alternative formulation of tachyon inflation using the geometrical tachyon arising from the time dependent motion of a BPS D3D3-brane in the background geometry due to kk parallel NSNS5-branes arranged around a ring of radius RR . Due to the fact that the mass of this geometrical tachyon field is 2/k\sqrt{2/k} times smaller than the corresponding open-string tachyon mass, we find that the slow roll conditions for inflation and the number of e-foldings can be satisfied in a manner that is consistent with an effective 4-dimensional model and with a perturbative string coupling. We also show that the metric perturbations produced at the end of inflation can be sufficiently small and do not lead to the inconsistencies that plague the open string tachyon models. Finally we argue for the existence of a minimum of the geometrical tachyon potential which could give rise to a traditional reheating mechanism.Comment: Latex, 20 pages, 4 figures; correction of algebraic errors in section 5 concerning the tachyon potential near its minimum. Conclusions unchange

    First-order melting of a weak spin-orbit Mott insulator into a correlated metal

    Full text link
    The electronic phase diagram of the weak spin-orbit Mott insulator (Sr(1-x)Lax)3Ir2O7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x~0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Neel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. As the metallic state is stabilized, a weak structural distortion develops and suggests a competing instability with the parent spin-orbit Mott state.Comment: 5 pages, 4 figure

    Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition

    Get PDF
    An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure and laser fluence. Different thin film morphology, crystallinity and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram. A good fit of our experimental observation with the growth diagram was found. This case study demonstrates that a more comprehensive understanding of the growth mode in PLD is possible

    Structural and electronic origin of the magnetic structures in hexagonal LuFeO3_3

    Get PDF
    Using combined theoretical and experimental approaches, we studied the structural and electronic origin of the magnetic structure in hexagonal LuFeO3_3. Besides showing the strong exchange coupling that is consistent with the high magnetic ordering temperature, the previously observed spin reorientation transition is explained by the theoretically calculated magnetic phase diagram. The structural origin of this spin reorientation that is responsible for the appearance of spontaneous magnetization, is identified by theory and verified by x-ray diffraction and absorption experiments.Comment: 5 pages, 2 tables and 4 figures, Please contact us for the supplementary material. Accepted in Phys. Rev. B, in productio

    Tuning Structural, Transport and Magnetic Properties of Epitaxial SrRuO3 through Ba-Substitution

    Full text link
    The perovskite ruthenates (ARuO3, A = Ca, Ba, or Sr) exhibit unique properties owing to a subtle interplay of crystal structure and electronic-spin degrees of freedom. Here, we demonstrate an intriguing continuous tuning of crystal symmetry from orthorhombic to tetragonal (no octahedral rotations) phases in epitaxial SrRuO3 achieved via Ba-substitution (Sr1-xBaxRuO3 with 0 < x < 0.7). An initial Ba-substitution to SrRuO3 not only changes the ferromagnetic properties, but also tunes the perpendicular magnetic anisotropy via flattening the Ru-O-Ru bond angle (to 180{\deg}), resulting in the maximum Curie temperature and an extinction of RuO6 rotational distortions at x = 0.20. For x > 0.2, the suppression of RuO6 octahedral rotational distortion dominantly enhances the ferromagnetism in the system, though competing with the impact of the RuO6 tetragonal distortion. Further increasing x > 0.2 gradually enhances the tetragonal-type distortion, resulting in the tuning of Ru-4d orbital occupancy and suppression of ferromagnetism. Our results demonstrate that isovalent substitution of the A-site cations significantly and controllably impacts both electronic and magnetic properties of perovskite oxides

    Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase

    Full text link
    In the presence of external magnetic field, the Kitaev model could either hosts gapped topological anyon or gapless Majorana fermions. In α\alpha-RuCl3_3, the gapped and gapless cases are only separated by a thirty-degree rotation of the in-plane magnetic field vector. The presence/absence of the spectral gap is key for understanding the thermal transport behavior in α\alpha-RuCl3_3. Here, we study the anisotropy of the oscillatory features of thermal conductivity in α\alpha-RuCl3_3. We examine the oscillatory features of thermal conductivities (k//a, k//b) with fixed external fields and found distinct behavior for the gapped (B//a) and gapless (B//b) scenarios. Furthermore, we track the evolution of thermal resistivity (λa\lambda_{a}) and its oscillatory features with the rotation of in-plane magnetic fields from B//b to B//a. The thermal resistivity λ(B,θ)\lambda (B,\theta) display distinct rotational symmetries before and after the emergence of the field induced Kitaev spin liquid phase. These experiment data suggest close correlations between the oscillatory features of thermal conductivity, the underlying Kitaev spin liquid phase and the fermionic excitation it holds

    Room-temperature multiferroic hexagonal LuFeO3_3 films

    Get PDF
    The crystal and magnetic structures of single-crystalline hexagonal LuFeO3_3 films have been studied using x-ray, electron and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3_3 films are room-temperature multiferroics
    • …
    corecore