1,916 research outputs found

    The Effect of Plant Water Storage on Water Fluxes within the Coupled Soil–Plant System

    Get PDF
    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil–plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model

    Matrix Pencils and Entanglement Classification

    Full text link
    In this paper, we study pure state entanglement in systems of dimension 2mn2\otimes m\otimes n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication (SLOCC). We introduce a connection between entanglement manipulations in these systems and the well-studied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2mn2\otimes m\otimes n states are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 23n2\otimes 3\otimes n systems, we also determine the hierarchy between these classes

    The role of menopause and reproductive senescence in a long-lived social mammal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Menopause is a seemingly maladaptive life-history trait that is found in many long-lived mammals. There are two competing evolutionary hypotheses for this phenomenon; in the adaptive view of menopause, the cessation of reproduction may increase the fitness of older females; in the non-adaptive view, menopause may be explained by physiological deterioration with age. The decline and eventual cessation of reproduction has been documented in a number of mammalian species, however the evolutionary cause of this trait is unknown.</p> <p>Results</p> <p>We examined a unique 30-year time series of killer whales, tracking the reproductive performance of individuals through time. Killer whales are extremely long-lived, and may have the longest documented post-reproductive lifespan of any mammal, including humans. We found no strong support for either of the adaptive hypotheses of menopause; there was little support for the presence of post-reproductive females benefitting their daughter's reproductive performance (interbirth interval and reproductive lifespan of daughters), or the number of mature recruits to the population. Oldest mothers (> 35) did appear to have a small positive impact on calf survival, suggesting that females may gain experience with age. There was mixed support for the grandmother hypothesis – grandoffspring survival probabilities were not influenced by living grandmothers, but grandmothers may positively influence survival of juveniles at a critical life stage.</p> <p>Conclusion</p> <p>Although existing data do not allow us to examine evolutionary tradeoffs between survival and reproduction for this species, we were able to examine the effect of maternal age on offspring survival. Our results are consistent with similar studies of other mammals – oldest mothers appear to be better mothers, producing calves with higher survival rates. Studies of juvenile survival in humans have reported positive benefits of grandmothers on newly weaned infants; our results indicate that 3-year old killer whales may experience a positive benefit from helpful grandmothers. While our research provides little support for menopause evolving to provide fitness benefits to mothers or grandmothers, our work supports previous research showing that menopause and long post-reproductive lifespans are not a human phenomenon.</p

    Resurgence of an Apex Marine Predator and the Decline in Prey Body Size

    Get PDF
    In light of recent recoveries of marine mammal populations worldwide and heightened concern about their impacts on marine food webs and global fisheries, it has become increasingly important to understand the potential impacts of large marine mammal predators on prey populations and their life-history traits. In coastal waters of the northeast Pacific Ocean, marine mammals have increased in abundance over the past 40 to 50 y, including fish-eating killer whales that feed primarily on Chinook salmon. Chinook salmon, a species of high cultural and economic value, have exhibited marked declines in average size and age throughout most of their North American range. This raises the question of whether size-selective predation by marine mammals is generating these trends in life-history characteristics. Here we show that increased predation since the 1970s, but not fishery selection alone, can explain the changes in age and size structure observed for Chinook salmon populations along the west coast of North America. Simulations suggest that the decline in mean size results from the selective removal of large fish and an evolutionary shift toward faster growth and earlier maturation caused by selection. Our conclusion that intensifying predation by fish-eating killer whales contributes to the continuing decline in Chinook salmon body size points to conflicting management and conservation objectives for these two iconic species

    Large-scale polymorphism discovery in macaque G-protein coupled receptors

    Get PDF
    Background: G-protein coupled receptors (GPCRs) play an inordinately large role in human health. Variation in the genes that encode these receptors is associated with numerous disorders across the entire spectrum of disease. GPCRs also represent the single largest class of drug targets and associated pharmacogenetic effects are modulated, in part, by polymorphisms. Recently, non-human primate models have been developed focusing on naturally-occurring, functionally-parallel polymorphisms in candidate genes. This work aims to extend those studies broadly across the roughly 377 non-olfactory GPCRs. Initial efforts include resequencing 44 Indian-origin rhesus macaques (Macaca mulatta), 20 Chinese-origin rhesus macaques, and 32 cynomolgus macaques (M. fascicularis). Results: Using the Agilent target enrichment system, capture baits were designed for GPCRs off the human and rhesus exonic sequence. Using next generation sequencing technologies, nearly 25,000 SNPs were identified in coding sequences including over 14,000 non-synonymous and more than 9,500 synonymous protein-coding SNPs. As expected, regions showing the least evolutionary constraint show greater rates of polymorphism and greater numbers of higher frequency polymorphisms. While the vast majority of these SNPs are singletons, roughly 1,750 non-synonymous and 2,900 synonymous SNPs were found in multiple individuals. Conclusions: In all three populations, polymorphism and divergence is highly concentrated in N-terminal and C-terminal domains and the third intracellular loop region of GPCRs, regions critical to ligand-binding and signaling. SNP frequencies in macaques follow a similar pattern of divergence from humans and new polymorphisms in primates have been identified that may parallel those seen in humans, helping to establish better non-human primate models of disease

    Quantifying Inter- and Intra-Population Niche Variability Using Hierarchical Bayesian Stable Isotope Mixing Models

    Get PDF
    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population
    corecore