58 research outputs found

    A New Schedule Estimation Technique for Construction Projects

    Get PDF
    Allen studied hundreds of construction projects and developed an accu-rate, practically useful model of their labor profiles. We combine Al-len’s labor profile with standard Earned Value Management (EVM) techniques and derive a simple, practical formula that estimates the fi-nal schedule from early project data. The schedule estimation formula is exact; it requires no approximations. The estimate is also surprisingly accurate and available early enough in the project for the project manager to be able to take appropriate actions. We use one of Allen’s real-world construction data sets to calibrate and validate our theoreti-cal model. Early estimates of the final schedule are remarkably accu-rate, and available early enough to be used to effect management changes. We also explain why a current schedule estimation method, Earned Schedule (ES), has a poor theoretical foundation and show that our model is superior to ES in predicting construction schedule delays. The model should provide warning of schedule delays early enough for project managers to take corrective actions

    Earned schedule formulation using nonlinear cost estimates at completion

    Get PDF
    This work contributes to improving available methodologies for duration and cost estimates of ongoing projects with nonlinear cost profiles. It is demonstrated that accurate time estimates can be made when a generalized mathematical formulation of the Earned Schedule and the point estimate methodology are used. It also highlights the advantages of using these duration estimate methodologies to provide more accurate nonlinear schedule-based cost estimates at completion. This is shown via application and comparison of the proposed methodologies to datasets of eight real case projects from the construction industry. In particular, the defined methodologies tend to perform better, on average, than traditional index-based formulae, especially in the early stages of project development when the practical benefits are the greatest for project teams to take their corrective actions

    On the Lambert W function: Economic Order Quantity applications and pedagogical considerations

    Get PDF
    We illustrate the use of the Lambert W function by analysing two Economic Order Quantity (EOQ) scenarios: an EOQ model with perishable inventory; and a Net Present Value analysis of an EOQ problem with trim loss. Both scenarios are motivated by real-world situations. Via these two examples, we reflect upon the pedagogical aspects of using the Lambert W function. We present a Lambert W function ‘look-up’ table for classroom use and a Microsoft Excel ‘Add-In’ for self-study and practical use. We also illustrate the use of the Laplace transform to conduct NPV analyses of the EOQ model

    Inventory management for stochastic lead times with order crossovers

    Get PDF
    We study the impact of stochastic lead times with order crossover on inventory costs and safety stocks in the order-up-to (OUT) policy. To motivate our research we present global logistics data which violates the traditional assumption that lead time demand is normally distributed. We also observe that order crossover is a common and important phenomenon in real supply chains. We present a new method for determining the distribution of the number of open orders. Using this method we identify the distribution of inventory levels when orders and the work-in-process are correlated. This correlation is present when demand is auto-correlated, demand forecasts are generated with non-optimal methods, or when certain ordering policies are present. Our method allows us to obtain exact safety stock requirements for the so-called proportional order-up-to (POUT) policy, a popular, implementable, linear generalization of the OUT policy. We highlight that the OUT replenishment policy is not cost optimal in global supply chains, as we are able to demonstrate the POUT policy always outperforms it under order cross-over. We show that unlike the constant lead-time case, minimum safety stocks and minimal inventory variance do not always lead to minimum costs under stochastic lead-times with order crossover. We also highlight an interesting side effect of minimizing inventory costs under stochastic lead times with order crossover with the POUT policy—an often significant reduction in the order variance

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore