3 research outputs found

    Antibody production in micro-organisms

    Get PDF
    Global demand for monoclonal antibody-based therapeutics (Mab’s) far exceeds current production capacity, and is expected to continue to grow based on current development pipelines. Despite their proven efficacy in a large number of indications, equitable use of these drugs is limited by the high cost of CHO-cell based production and purification. Micro-organisms such as yeasts and filamentous fungi present an attractive alternative for antibody production, but will require extensive genetic modification to achieve both high titers and mammalian-like glycosylation patterns in a secreted product that is easily purified. Towards this end, we developed state-of-the-art genetic engineering tools for eight micro-organisms to enable the highly efficient, targeted multiplexed integrations necessary for antibody production in these hosts. We demonstrated successful antibody production in several of these micro-organisms, paving the way to low-cost microbial fermentation to replace CHO fermentation

    Challenging the workhorse: Comparative analysis of eukaryotic micro‐organisms for expressing monoclonal antibodies

    No full text
    © 2019 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles

    Challenging the workhorse: Comparative analysis of eukaryotic micro‐organisms for expressing monoclonal antibodies

    No full text
    © 2019 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. For commercial protein therapeutics, Chinese hamster ovary (CHO) cells have an established history of safety, proven capability to express a wide range of therapeutic proteins and high volumetric productivities. Expanding global markets for therapeutic proteins and increasing concerns for broadened access of these medicines has catalyzed consideration of alternative approaches to this platform. Reaching these objectives likely will require an order of magnitude increase in volumetric productivity and a corresponding reduction in the costs of manufacture. For CHO-based manufacturing, achieving this combination of targeted improvements presents challenges. Based on a holistic analysis, the choice of host cells was identified as the single most influential factor for both increasing productivity and decreasing costs. Here we evaluated eight wild-type eukaryotic micro-organisms with prior histories of recombinant protein expression. The evaluation focused on assessing the potential of each host, and their corresponding phyla, with respect to key attributes relevant for manufacturing, namely (a) growth rates in industry-relevant media, (b) adaptability to modern techniques for genome editing, and (c) initial characterization of product quality. These characterizations showed that multiple organisms may be suitable for production with appropriate engineering and development and highlighted that yeast in general present advantages for rapid genome engineering and development cycles
    corecore