19 research outputs found

    แอฟฟินิตีไบโอเซอร์อาศัยหลักการวัดทางไฟฟ้าเคมี

    No full text
    Thesis (Ph.D., Analytical Chemistry)--Prince of Songkla University, 200

    A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid

    No full text
    A procedure was developed for the covalent coupling of anti-alpha-fetoprotein antibody (anti-AFP) to a gold surface modified with a self-assembled monolayer (SAM) of thiourea (TU). The performance of the SAM-antibody layer was compared to those of similar layers based on thioctic acid (TA) and 3-mercaptopropionic acid (MPA) by using flow injection capacitive immunosensor system. Covalent coupling of anti-AFP on self-assembled thiourea monolayer (SATUM) modified gold electrode can be used to detect alpha-fetoprotein with high efficiency, similar sensitivity, the same linear range (0.01-10 mu g l(-1)) and detection limit (10ng l(-1)) as those obtained from sensors based on self-assembled thioctic acid monolayer (SATAM) and self-assembled 3-mercaptopropionic acid monolayer (SAMPAM). The system is specific for alpha-fetoprotein and can be regenerated and reused up to 48 times. Therefore, self-assembled monolayer using thiourea which is cheaper than thioctic acid and 3-mercaptopropionic acid is a good alternative for biosensor applications when SAMs are used. (c) 2006 Elsevier B.V. All rights reserved

    Capacitive biosensor for detection of endotoxin

    No full text
    A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 x 10(-13) M and linearity ranging from 1.0 x 10(-13) to 1.0 x 10(-10) M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P < 0.05)

    Evaluation on the Intrinsic Physicoelectrochemical Attributes and Engineering of Micro-, Nano-, and 2D-Structured Allotropic Carbon-Based Papers for Flexible Electronics

    No full text
    Flexible electronics have gained more attention for emerging electronic devices such as sensors, biosensors, and batteries with advantageous properties including being thin, lightweight, flexible, and low-cost. The development of various forms of allotropic carbon papers provided a new dry-manufacturing route for the fabrication of flexible and wearable electronics, while the electrochemical performance and the bending stability are largely influenced by the bulk morphology and the micro-/nanostructured domains of the carbon papers. Here, we evaluate systematically the intrinsic physicoelectrochemical properties of allotropic carbon-based conducting papers as flexible electrodes including carbon-nanotubes-paper (CNTs-paper), graphene-paper (GR-paper), and carbon-fiber-paper (CF-paper), followed by functionalization of the allotropic carbon papers for the fabrication of flexible electrodes. The morphology, chemical structure, and defects originating from the allotropic nanostructured carbon materials were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, followed by evaluating the electrochemical performance of the corresponding flexible electrodes by cyclic voltammetry and electrochemical impedance spectroscopy. The electron-transfer rate constants of the CNTs-paper and GR-paper electrodes were similar to 14 times higher compared with the CF-paper electrode. The CNTs-paper and GR-paper electrodes composed of nanostructured carbon showed significantly higher bending stabilities of 5.61 and 4.96 times compared with the CF-paper. The carbon-paper flexible electrodes were further functionalized with an inorganic catalyst, Prussian blue (PB), forming the PB-carbon-paper catalytic electrode and an organic conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), forming the PEDOT-carbon-paper capacitive electrode. The intrinsic attribute of different allotropic carbon electrodes affects the deposition of PB and PEDOT, leading to different electrocatalytic and capacitive performances. These findings are insightful for the future development and fabrication of advanced flexible electronics with allotropic carbon papers.Funding Agencies|Swedish Research CouncilSwedish Research CouncilEuropean Commission [VR-2015-04434]; Royal Golden Jubilee Ph.D. program (RGJ) from the Thailand Research Fund [PHD/0212/2560]</p

    Adsorptive Cathodic Stripping Voltammetry for Quantification of Alprazolam

    No full text
    A simple and highly sensitive electrochemical sensor was developed for adsorptive cathodic stripping voltammetry of alprazolam. Based on an electrochemically pretreated glassy carbon electrode, the sensor demonstrated good adsorption and electrochemical reduction of alprazolam. The morphology of the glassy carbon electrode and the electrochemically pretreated glassy carbon electrode were characterized by scanning electron microscopy/energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical behaviors of alprazolam were determined by cyclic voltammetry, and the analytical measurements were studied by adsorptive cathodic stripping voltammetry. Optimized operational conditions included the concentration and deposition time of sulfuric acid in the electrochemical pretreatment, preconcentration potential, and preconcentration time. Under optimal conditions, the developed alprazolam sensor displayed a quantification limit of 0.1 mg L−1, a detection limit of 0.03 mg L−1, a sensitivity of 67 µA mg−1 L cm−2 and two linear ranges: 0.1 to 4 and 4 to 20 mg L−1. Sensor selectivity was excellent, and repeatability (%RSD &lt; 4.24%) and recovery (82.0 ± 0.2 to 109.0 ± 0.3%) were good. The results of determining alprazolam in beverages with the developed system were in good agreement with results from the gas chromatography–mass spectrometric method

    Craft-and-Stick Xurographic Manufacturing of Integrated Microfluidic Electrochemical Sensing Platform

    No full text
    An innovative modular approach for facile design and construction of flexible microfluidic biosensor platforms based on a dry manufacturing “craft-and-stick” approach is developed. The design and fabrication of the flexible graphene paper electrode (GPE) unit and polyethylene tetraphthalate sheet (PET)6/adhesive fluidic unit are completed by an economic and generic xurographic craft approach. The GPE widths and the microfluidic channels can be constructed down to 300 μm and 200 μm, respectively. Both units were assembled by simple double-sided adhesive tapes into a microfluidic integrated GPE (MF-iGPE) that are flexible, thin (−1 glucose. The MF-iGPE showed good reproducibility for glucose detection (RSD n = 6) and required only 10 μL of the analyte. This modular craft-and-stick manufacturing approach could potentially further develop along the concept of paper-crafted model assembly kits suitable for low-resource laboratories or classroom settings

    Cost-Effective Foam-Based Colorimetric Sensor for Roadside Testing of Alcohol in Undiluted Saliva

    No full text
    A novel foam-based colorimetric alcohol sensor was developed for the detection of alcohol in saliva. Detection was based on the color change of a potassium dichromate-sulfuric acid solution absorbed by melamine foam. In the presence of alcohol, the orange colorimetric sensor changed color to brown, green and, ultimately, blue, depending on the concentration of alcohol in the sample. The response of the proposed sensor toward alcohol was linear from 0.10 to 2.5% v/v. The limit of detection was 0.03% v/v. Alcohol concentration could be determined using the naked eye in the range of 0.00 to 10% v/v. The developed alcohol sensor presented good operational accuracy (RSD = 0.30&ndash;1.90%, n = 8) and good stability for 21 days when stored at 25 &deg;C and 75 days when stored at 4 &deg;C. The results of alcohol detection with the developed sensor showed no significant difference from the results of spectrophotometric detection at a 95% confidence level (p &gt; 0.05). The sensor was easy to use, small, inexpensive and portable, enabling drivers to accurately measure their own blood alcohol level and providing convenient speed in forensic applications

    The Development of Digital Image Colorimetric Quantitative Analysis of Multi-Explosives Using Polymer Gel Sensors

    No full text
    Polymer gel sensors on 96-well plates were successfully used to detect four different multi-explosives, including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), nitrite, and perchlorate. The products of reactions between the explosives and the polymer gel sensors were digitally captured, and the images were analyzed by a developed Red&ndash;Green&ndash;Blue (RGB) analyzer program on a notebook computer. RGB color analysis provided the basic color data of the reaction products for the quantification of the explosives. The results provided good linear range, sensitivity, limit of detection, limit of quantitation, specificity, interference tolerance, and recovery. The method demonstrated great potential to detect explosives by colorimetric analysis of digital images of samples on 96-well plates. It is possible to apply the proposed method for quantitative on-site field screening of multi-explosives

    A Fabrication of Multichannel Graphite Electrode Using Low-Cost Stencil-Printing Technique

    No full text
    Multichannel graphite electrodes (MGrEs) have been designed and fabricated in this study. A template was cut from an adhesive plastic sheet using a desktop cutting device. The template was placed on a polypropylene substrate, and carbon graphite ink was applied with a squeegee to the template. The size of the auxiliary electrode (AE) as well as the location of the reference electrode (RE) of MGrEs design were investigated. Scanning electron microscopy was used to determine the thickness of the ink on the four working electrodes (WEs), which was 21.9 ± 1.8 µm. Cyclic voltammetry with a redox probe solution was used to assess the precision of the four WEs. The intra-electrode repeatability and inter-electrode reproducibility of the MGrEs production were satisfied by low RSD (<6%). Therefore, the MGrEs is reliable and capable of detecting four replicates of the target analyte in a single analysis. The electrochemical performance of four WEs was investigated and compared to one WE. The sensitivity of the MGrEs was comparable to the sensitivity of a single WE. The MGrEs’ potential applications were investigated by analyzing the nitrite in milk and tap water samples (recoveries values of 97.6 ± 0.4 to 110 ± 2%)

    A Fabrication of Multichannel Graphite Electrode Using Low-Cost Stencil-Printing Technique

    No full text
    Multichannel graphite electrodes (MGrEs) have been designed and fabricated in this study. A template was cut from an adhesive plastic sheet using a desktop cutting device. The template was placed on a polypropylene substrate, and carbon graphite ink was applied with a squeegee to the template. The size of the auxiliary electrode (AE) as well as the location of the reference electrode (RE) of MGrEs design were investigated. Scanning electron microscopy was used to determine the thickness of the ink on the four working electrodes (WEs), which was 21.9 &plusmn; 1.8 &micro;m. Cyclic voltammetry with a redox probe solution was used to assess the precision of the four WEs. The intra-electrode repeatability and inter-electrode reproducibility of the MGrEs production were satisfied by low RSD (&lt;6%). Therefore, the MGrEs is reliable and capable of detecting four replicates of the target analyte in a single analysis. The electrochemical performance of four WEs was investigated and compared to one WE. The sensitivity of the MGrEs was comparable to the sensitivity of a single WE. The MGrEs&rsquo; potential applications were investigated by analyzing the nitrite in milk and tap water samples (recoveries values of 97.6 &plusmn; 0.4 to 110 &plusmn; 2%)
    corecore