8 research outputs found

    Fast Removal of Citalopram Drug from Waste Water Using Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate Followed by UV-Spectrometry

    No full text
    A simple and sensitive, solid-phase extraction method for the removal of Citalopram drug from waste water has been developed by using magnetic nanoparticles modified with surfactant sodium dodecyl sulfate. These magnetic nanoparticles have shown great adsorptive tendency towards Citalopram drug. The effect of different parameters influencing the extraction efficiency of this drug were investigated and optimized including the pH, amount of the surfactant, contact time and temperature. The extracts were analyzed by ultraviolet spectrophotometry at 239nm. Under these conditions, the related standard deviation (RSD %) of the method at two concentrations (5 and 50µg.mL-1) was in the range of (3.14–3.75) % (n = 8). The calibration curve was linear in the range of 2-100 µg.mL-1 of Citalopram drug with a correlation coefficient of >0.99

    Chemical Composition of Iran's Pistacia atlantica Cold-Pressed Oil

    No full text
    The lipid fraction of Pistacia atlantica seeds was extracted for the first time by means of cold-press technique and analyzed for its chemical composition. The fatty acids, sterols, triacylglycerols (TAG), tocopherols, polyphenols, and pigments were identified and their concentrations were determined by means of reversed-phase high-performance liquid chromatography (RP-HPLC) and gas chromatography (GC). Because of its high content of unsaturated fatty acids, it might prove to be of value in diets and it may be used as edible cooking or salad oils or for margarine manufacture. Pistacia atlantica seed oil has the unique sterols and tocopherols content providing source of natural antioxidants. The main triacylglycerols were SLL + PLO, SOL + POO, OOLn + PLL, OOO, and SOO. This paper examined the phenolic fraction of Pistacia atlantica seed oil. Moreover, caffeic acid followed by cinnamic acid, pinoresinol, vanillin, p-Coumaric acid, ferulic acid, and o-Coumaric acid was also determined. This paper presents the first investigation of chlorophyll's and carotene's composition in Pistacia atlantica seed oil. Furthermore, pheophytin a was the major component, followed by luteoxanthin, neoxanthin, violaxanthin, lutein, lutein isomers, chlorophyll a, chlorophyll a′, and pheophytin a′ were also determined

    Affinity adhesion of carbohydrate particles and yeast cells to boronate-containing polymer brushes grafted onto siliceous supports

    No full text
    Cross-linked agarose particles (Sepharose CL-6B) and baker's yeast cells were found to adhere to siliceous supports end-grafted with boronate-containing copolymers (BCCs) of N,N-dimethylacrylamide at pH >= 7.5, due to boronate interactions with surface carbohydrates of the particles and the cells. These interactions were registered both on macroscopic and on molecular levels: the BCCs spontaneously adsorbed on the agarose gel at pH >= 7.5, with adsorption increasing with pH. Agarose particles and yeast cells stained with Procion Red HE-3B formed stable, monolayer-like structures at pH 8.0, whereas at pH 7.0-7.8 the structures on the copolymer-grafted supports were less stable and more random. At pH 9.0, 50% saturation of the surface with adhering cells was attained in 2 min. Stained cells formed denser and more stable layers on the copolymer-grafted supports than they did on supports modified with self-assembled organosilane layers derivatized with low-molecular-weight boronate, presumably due to a higher reactivity of the grafted BCCs. Quantitative detachment of adhered particles and cells could be achieved by addition of 20 mm fructose - a strong competitor for binding to boronates - at pH 7.0-9.0. Regeneration of the grafted supports allowed several sequential adhesion and detachment cycles with stained yeast cells. Affinity adhesion of micron-sized carbohydrate particles to boronate-containing polymer brushes fixed on solid supports is discussed as a possible model system suggesting a new approach to isolation and separation of living cells
    corecore