183 research outputs found

    Improving prenatal diagnosis through standards and aggregation.

    Get PDF
    Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools

    COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE Study): prospective cohort study and systematic review

    Get PDF
    OBJECTIVES: To determine the yield of antenatal exome sequencing (ES) over chromosome microarray (CMA) / conventional karyotyping in; (i) any prenatally diagnosed congenital heart disease (CHD); (ii) isolated CHD; (iii) multi‐system CHD and; (iv) CHD by phenotypic subgroup. / METHODS: A prospective cohort study of 197 trios undergoing ES following CMA/karyotype because CHD was identified prenatally and a systematic review of the literature was performed. MEDLINE, EMBASE and CINAHL (2000–Oct 2019) databases were searched electronically. Selected studies included those with; (i) >3 cases; (ii) initiation of testing based upon a prenatal phenotype only and; (iii) where CMA/karyotyping was negative. PROSPERO No. CRD42019140309. / RESULTS: In our cohort ES gave an additional diagnostic yield in; (i) all CHD; (ii) isolated CHD and; (iii) multi‐system CHD of 12.7% (n=25/197), 11.5% (n=14/122) and 14.7% (n=11/75) (p=0.81). The pooled incremental yields for the aforementioned categories from 18‐studies (n=636) were 21% (95% CI, 15‐27%), 11% (95% CI, 7‐15%) and 37% (95% CI, 18%‐56%) respectively. This did not differ significantly when sub‐analyses were limited to studies including >20 cases. In instances of multi‐system CHD in the primary analysis, the commonest extra‐cardiac anomalies associated with a pathogenic variant were those affecting the genitourinary system 44.2% (n=23/52). Cardiac shunt lesions had the greatest incremental yield, 41% (95% CI, 19‐63%), followed by right‐sided lesions 26% (95% CI, 9‐43%). In the majority of instances pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease genes (68/96; 70.8%). The commonest monogenic syndrome identified was Kabuki syndrome (n=19/96; 19.8%). / CONCLUSIONS: Despite the apparent incremental yield of prenatal exome sequencing in congenital heart disease, the routine application of such a policy would require the adoption of robust bioinformatic, clinical and ethical pathways. Whilst the greatest yield is with multi‐system anomalies, consideration may also be given to performing ES in the presence of isolated cardiac abnormalities

    Fetal exome sequencing for isolated increased nuchal translucency: should we be doing it?

    Get PDF
    Objective: To evaluate the utility of prenatal exome sequencing (ES) for isolated increased nuchal translucency (NT) and investigate factors which increase diagnostic yield. Design: Retrospective analysis of data from two prospective cohort studies. Setting: Fetal medicine centres in the UK and USA. Population: Fetuses with increased NT ≥3.5mm at 11-14 weeks’ gestation recruited to the Prenatal Assessment of Genomes and Exomes (PAGE) and Columbia fetal WES studies (n = 213). Methods: We grouped cases based on (i) the presence of additional structural abnormalities at presentation in the first trimester or later in pregnancy, and (ii) NT measurement at presentation. We compared diagnostic rates between groups using Fisher exact test. Main Outcome Measures: Detection of diagnostic genetic variants considered to have caused the observed fetal structural anomaly. Results: Diagnostic variants were detected in 12 (22.2%) of 54 fetuses presenting with non-isolated increased NT, 12 (32.4%) of 37 fetuses with isolated increased NT in the first trimester and additional abnormalities later in pregnancy, and 2 (1.8%) of 111 fetuses with isolated increased NT in the first trimester and no other abnormalities on subsequent scans. Diagnostic rate also increased with increasing size of NT. Conclusions: The diagnostic yield of prenatal ES is low for fetuses with isolated increased NT but significantly higher where there are additional structural anomalies. Prenatal ES may not be appropriate for truly isolated increased NT but timely, careful ultrasound scanning to identify other anomalies emerging later can direct testing to focus where there is a higher likelihood of diagnosis

    COngenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study: prospective cohort study and systematic review.

    Get PDF
    OBJECTIVE: To determine the incremental yield of antenatal exome sequencing (ES) over chromosomal microarray analysis (CMA) or conventional karyotyping in prenatally diagnosed congenital heart disease (CHD). METHODS: A prospective cohort study of 197 trios undergoing ES following CMA or karyotyping owing to CHD identified prenatally and a systematic review of the literature were performed. MEDLINE, EMBASE, CINAHL and ClinicalTrials.gov (January 2000 to October 2019) databases were searched electronically for studies reporting on the diagnostic yield of ES in prenatally diagnosed CHD. Selected studies included those with more than three cases, with initiation of testing based upon prenatal phenotype only and that included cases in which CMA or karyotyping was negative. The incremental diagnostic yield of ES was assessed in: (1) all cases of CHD; (2) isolated CHD; (3) CHD associated with extracardiac anomaly (ECA); and (4) CHD according to phenotypic subgroup. RESULTS: In our cohort, ES had an additional diagnostic yield in all CHD, isolated CHD and CHD associated with ECA of 12.7% (25/197), 11.5% (14/122) and 14.7% (11/75), respectively (P = 0.81). The corresponding pooled incremental yields from 18 studies (encompassing 636 CHD cases) included in the systematic review were 21% (95% CI, 15-27%), 11% (95% CI, 7-15%) and 37% (95% CI, 18-56%), respectively. The results did not differ significantly when subanalysis was limited to studies including more than 20 cases, except for CHD associated with ECA, in which the incremental yield was greater (49% (95% CI, 17-80%)). In cases of CHD associated with ECA in the primary analysis, the most common extracardiac anomalies associated with a pathogenic variant were those affecting the genitourinary system (23/52 (44.2%)). The greatest incremental yield was in cardiac shunt lesions (41% (95% CI, 19-63%)), followed by right-sided lesions (26% (95% CI, 9-43%)). In the majority (68/96 (70.8%)) of instances, pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease genes. The most common (19/96 (19.8%)) monogenic syndrome identified was Kabuki syndrome. CONCLUSIONS: There is an apparent incremental yield of prenatal ES in CHD. While the greatest yield is in CHD associated with ECA, consideration could also be given to performing ES in the presence of an isolated cardiac abnormality. A policy of routine application of ES would require the adoption of robust bioinformatic, clinical and ethical pathways. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd

    Decision-to-incision times and maternal and infant outcomes.

    Get PDF
    Journal ArticleOBJECTIVE: To measure decision-to-incision intervals and related maternal and neonatal outcomes in a cohort of women undergoing emergency cesarean deliveries at multiple university-based hospitals comprising the National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. METHODS: All women undergoing a primary cesarean delivery at a Network center during a 2-year time span were prospectively ascertained. Emergency procedures were defined as those performed for umbilical cord prolapse, placental abruption, placenta previa with hemorrhage, nonreassuring fetal heart rate pattern, or uterine rupture. Detailed information regarding maternal and neonatal outcomes, including the interval from the decision time to perform cesarean delivery to the actual skin incision, was collected. RESULTS: Of the 11,481 primary cesarean deliveries, 2,808 were performed for an emergency indication. Of these, 1,814 (65%) began within 30 minutes of the decision to operate. Maternal complication rates, including endometritis, wound infection, and operative injury, were not related to the decision-to-incision interval. Measures of newborn compromise including umbilical artery pH less than 7 and intubation in the delivery room were significantly greater when the cesarean delivery was commenced within 30 minutes, likely attesting to the need for expedited delivery. Of the infants with indications for an emergency cesarean delivery who were delivered more than 30 minutes after the decision to operate, 95% did not experience a measure of newborn compromise. CONCLUSION: Approximately one third of primary cesarean deliveries performed for emergency indications are commenced more than 30 minutes after the decision to operate, and the majority were for nonreassuring heart rate tracings. In these cases, adverse neonatal outcomes were not increased. LEVEL OF EVIDENCE: II-2

    Fetal exome sequencing for isolated increased nuchal translucency: should we be doing it?

    Get PDF
    Funder: National Institute for Health Research (NIHR) Biomedical Research Centre, Great Ormond Street Hospital; Id: http://dx.doi.org/10.13039/501100019256OBJECTIVE: To evaluate the utility of prenatal exome sequencing (ES) for isolated increased nuchal translucency (NT) and to investigate factors that increase diagnostic yield. DESIGN: Retrospective analysis of data from two prospective cohort studies. SETTING: Fetal medicine centres in the UK and USA. POPULATION: Fetuses with increased NT ≥3.5 mm at 11-14 weeks of gestation recruited to the Prenatal Assessment of Genomes and Exomes (PAGE) and Columbia fetal whole exome sequencing studies (n = 213). METHODS: We grouped cases based on (1) the presence of additional structural abnormalities at presentation in the first trimester or later in pregnancy, and (2) NT measurement at presentation. We compared diagnostic rates between groups using Fisher exact test. MAIN OUTCOME MEASURES: Detection of diagnostic genetic variants considered to have caused the observed fetal structural anomaly. RESULTS: Diagnostic variants were detected in 12 (22.2%) of 54 fetuses presenting with non-isolated increased NT, 12 (32.4%) of 37 fetuses with isolated increased NT in the first trimester and additional abnormalities later in pregnancy, and 2 (1.8%) of 111 fetuses with isolated increased NT in the first trimester and no other abnormalities on subsequent scans. Diagnostic rate also increased with increasing size of NT. CONCLUSIONS: The diagnostic yield of prenatal ES is low for fetuses with isolated increased NT but significantly higher where there are additional structural anomalies. Prenatal ES may not be appropriate for truly isolated increased NT but timely, careful ultrasound scanning to identify other anomalies emerging later can direct testing to focus where there is a higher likelihood of diagnosis

    Repeat prenatal corticosteroid prior to preterm birth: a systematic review and individual participant data meta-analysis for the PRECISE study group (prenatal repeat corticosteroid international IPD study group: assessing the effects using the best level of evidence) - study protocol

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BACKGROUND The aim of this individual participant data (IPD) meta-analysis is to assess whether the effects of repeat prenatal corticosteroid treatment given to women at risk of preterm birth to benefit their babies are modified in a clinically meaningful way by factors related to the women or the trial protocol. METHODS/DESIGN The Prenatal Repeat Corticosteroid International IPD Study Group: assessing the effects using the best level of Evidence (PRECISE) Group will conduct an IPD meta-analysis. The PRECISE International Collaborative Group was formed in 2010 and data collection commenced in 2011. Eleven trials with up to 5,000 women and 6,000 infants are eligible for the PRECISE IPD meta-analysis. The primary study outcomes for the infants will be serious neonatal outcome (defined by the PRECISE International IPD Study Group as one of death (foetal, neonatal or infant); severe respiratory disease; severe intraventricular haemorrhage (grade 3 and 4); chronic lung disease; necrotising enterocolitis; serious retinopathy of prematurity; and cystic periventricular leukomalacia); use of respiratory support (defined as mechanical ventilation or continuous positive airways pressure or other respiratory support); and birth weight (Z-scores). For the children, the primary study outcomes will be death or any neurological disability (however defined by trialists at childhood follow up and may include developmental delay or intellectual impairment (developmental quotient or intelligence quotient more than one standard deviation below the mean), cerebral palsy (abnormality of tone with motor dysfunction), blindness (for example, corrected visual acuity worse than 6/60 in the better eye) or deafness (for example, hearing loss requiring amplification or worse)). For the women, the primary outcome will be maternal sepsis (defined as chorioamnionitis; pyrexia after trial entry requiring the use of antibiotics; puerperal sepsis; intrapartum fever requiring the use of antibiotics; or postnatal pyrexia). DISCUSSION Data analyses are expected to commence in 2011 with results publicly available in 2012.Caroline A Crowther ... Tanya K Bubner ... Philippa F Middleton ... Lisa Yelland ... Sasha Zhang ... et al

    Fetal hydrops and the Incremental yield of Next-generation sequencing over standard prenatal Diagnostic testing (FIND) study: prospective cohort study and meta-analysis.

    Get PDF
    OBJECTIVE: To determine the incremental yield of exome sequencing (ES) over chromosomal microarray analysis (CMA) or karyotyping in prenatally diagnosed non-immune hydrops fetalis (NIHF). METHODS: A prospective cohort study (comprising an extended group of the Prenatal Assessment of Genomes and Exomes (PAGE) study) was performed which included 28 cases of prenatally diagnosed NIHF undergoing trio ES following negative CMA or karyotyping. These cases were combined with data from a systematic review of the literature. MEDLINE, EMBASE, CINAHL and ClinicalTrials.gov databases were searched electronically (January 2000 to October 2020) for studies reporting on the incremental yield of ES over CMA or karyotyping in fetuses with prenatally detected NIHF. Inclusion criteria for the systematic review were: (i) at least two cases of NIHF undergoing sequencing; (ii) testing initiated based on prenatal ultrasound-based phenotype; and (iii) negative CMA or karyotyping result. The incremental diagnostic yield of ES was assessed in: (i) all cases of NIHF; (ii) isolated NIHF; (iii) NIHF associated with an additional fetal structural anomaly; and (iv) NIHF according to severity (i.e. two vs three or more cavities affected). RESULTS: In the extended PAGE study cohort, the additional diagnostic yield of ES over CMA or karyotyping was 25.0% (7/28) in all NIHF cases, 21.4% (3/14) in those with isolated NIHF and 28.6% (4/14) in those with non-isolated NIHF. In the meta-analysis, the pooled incremental yield based on 21 studies (306 cases) was 29% (95% CI, 24-34%; P < 0.00001; I2  = 0%) in all NIHF, 21% (95% CI, 13-30%; P < 0.00001; I2  = 0%) in isolated NIHF and 39% (95% CI, 30-49%; P < 0.00001; I2  = 1%) in NIHF associated with an additional fetal structural anomaly. In the latter group, congenital limb contractures were the most prevalent additional structural anomaly associated with a causative pathogenic variant, occurring in 17.3% (19/110) of cases. The incremental yield did not differ significantly according to hydrops severity. The most common genetic disorders identified were RASopathies, occurring in 30.3% (27/89) of cases with a causative pathogenic variant, most frequently due to a PTPN11 variant (44.4%; 12/27). The predominant inheritance pattern in causative pathogenic variants was autosomal dominant in monoallelic disease genes (57.3%; 51/89), with most being de novo (86.3%; 44/51). CONCLUSIONS: Use of prenatal next-generation sequencing in both isolated and non-isolated NIHF should be considered in the development of clinical pathways. Given the wide range of potential syndromic diagnoses and heterogeneity in the prenatal phenotype of NIHF, exome or whole-genome sequencing may prove to be a more appropriate testing approach than a targeted gene panel testing strategy. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology

    Prenatal Detection of Aneuploidy and Imbalanced Chromosomal Arrangements by Massively Parallel Sequencing

    Get PDF
    Fetal chromosomal abnormalities are the most common reasons for invasive prenatal testing. Currently, G-band karyotyping and several molecular genetic methods have been established for diagnosis of chromosomal abnormalities. Although these testing methods are highly reliable, the major limitation remains restricted resolutions or can only achieve limited coverage on the human genome at one time. The massively parallel sequencing (MPS) technologies which can reach single base pair resolution allows detection of genome-wide intragenic deletions and duplication challenging karyotyping and microarrays as the tool for prenatal diagnosis. Here we reported a novel and robust MPS-based method to detect aneuploidy and imbalanced chromosomal arrangements in amniotic fluid (AF) samples. We sequenced 62 AF samples on Illumina GAIIx platform and with averagely 0.01× whole genome sequencing data we detected 13 samples with numerical chromosomal abnormalities by z-test. With up to 2× whole genome sequencing data we were able to detect microdeletion/microduplication (ranged from 1.4 Mb to 37.3 Mb of 5 samples from chorionic villus sampling (CVS) using SeqSeq algorithm. Our work demonstrated MPS is a robust and accurate approach to detect aneuploidy and imbalanced chromosomal arrangements in prenatal samples
    corecore