9 research outputs found

    PETREL: Platform for Extra and Terrestrial Remote Examination with LCTF

    Get PDF
    A small satellite ”PETREL” for UV astronomy and remote sensing with ”tunable” multi-spectral cameras conducted by an academia-industrial collaboration is presented. This project was originally proposed by an astronomer who desired a satellite for exploration of explosive objects in ultraviolet. To avoid the earthshine the astronomical observations are scheduled only in the nighttime. To utilize the daytime more electively we conceived a plan of ”satellite sharing” with the industrial collaborators, that can also reduce the developing cost drastically. The daytime mission is spectroscopy that is one of the potential fields in terms of data business, because that can provide chemical and biological information on the surface of the earth. We employ multi-spectral cameras making use of liquid crystal tunable filters (LCTFs) that enable adaptive observations at the optimized wave-bands for each targets. In 2020, this remote-sensing project and ultraviolet astronomy mission were accepted as a small satellite project of JAXA’s Innovative Satellite Technology Demonstration program and as an ISAS/JAXA’s small-scale program, respectively. This satellit

    Imaging of submicroampere currents in bilayer graphene using a scanning diamond magnetometer

    Full text link
    We report on nanometer magnetic imaging of two-dimensional current flow in bilayer graphene devices at room temperature. By combining dynamical modulation of the source-drain current with ac quantum sensing of a nitrogen-vacancy center in the diamond probe tip, we acquire magnetic field and current density maps with excellent sensitivities of 4.6 nT and 20 nA/µm, respectively. The spatial resolution is 50-100 nm. We introduce a set of methods for increasing the technique’s dynamic range and for mitigating undesired back-action of magnetometry operation (scanning tip, laser and microwave pulses) on the electronic transport. Finally, we show that our imaging technique is able to resolve small variations in the current flow pattern in response to changes in the background potential. Our experiments demonstrate the feasibility for detecting and imaging subtle spatial features of nanoscale transport in two-dimensional materials and conductors.ISSN:2331-701

    Tunable Valley Splitting due to Topological Orbital Magnetic Moment in Bilayer Graphene Quantum Point Contacts

    Full text link
    In multivalley semiconductors, the valley degree of freedom can be potentially used to store, manipulate and read quantum information, but its control remains challenging. The valleys in bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley g-factor. However, control over the valley g-factor has not been demonstrated yet. We experimentally determine the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer graphene. Using finite bias spectroscopy we measure the energy scales arising from the lateral confinement as well as the Zeeman splitting and find a spin g-factor of 2. The valley g-factor can be tuned by a factor of 3 using vertical electric fields, reaching values between 40 and 120. The results are quantitatively explained by a calculation considering topological magnetic moment and its dependence on confinement and the vertical displacement field

    Gap Opening in Twisted Double Bilayer Graphene by Crystal Fields

    Full text link
    | openaire: EC/H2020/766025/EU//QuESTechCrystal fields occur due to a potential difference between chemically different atomic species. In van der Waals heterostructures such fields are naturally present perpendicular to the planes. It has been realized recently that twisted graphene multilayers provide powerful playgrounds to engineer electronic properties by the number of layers, the twist angle, applied electric biases, electronic interactions, and elastic relaxations, but crystal fields have not received the attention they deserve. Here, we show that the band structure of large-angle twisted double bilayer graphene is strongly modified by crystal fields. In particular, we experimentally demonstrate that twisted double bilayer graphene, encapsulated between hBN layers, exhibits an intrinsic band gap. By the application of an external field, the gaps in the individual bilayers can be closed, allowing to determine the crystal fields. We find that crystal fields point from the outer to the inner layers with strengths in the bottom/top bilayer Eb = 0.13 V/nm ≈ -Et = 0.12 V/nm. We show both by means of first-principles calculations and low energy models that crystal fields open a band gap in the ground state. Our results put forward a physical scenario in which a crystal field effect in carbon substantially impacts the low energy properties of twisted double bilayer graphene, suggesting that such contributions must be taken into account in other regimes to faithfully predict the electronic properties of twisted graphene multilayers.Peer reviewe
    corecore