2 research outputs found

    Enhancing Soil Health and Plant Growth through Microbial Fertilizers: Mechanisms, Benefits, and Sustainable Agricultural Practices

    No full text
    Soil microorganisms play a crucial role in maintaining the structure and function of soil ecosystems. This study aims to explore the effects of microbial fertilizers on improving soil physicochemical properties and promoting plant growth. The results show that the application of microbial fertilizers significantly increases the richness of soil microorganisms, maintains soil microecological balance, and effectively improves the soil environment. Through various secondary metabolites, proteins, and mucilage secreted by the developing plant root system, microbial fertilizers recruit specific fungal microorganisms. These microorganisms, by binding soil particles with their extracellular polysaccharides and entwining them, fix the soil, enhance the stability of soil aggregates, and ameliorate soil compaction. Moreover, after the application of microbial fertilizers, the enriched soil microbial community not only promotes the plant’s absorption and utilization of key elements such as nitrogen (N), phosphorus (P), and potassium (K), thereby increasing fruit yield and quality, but also competes with pathogens and induces systemic resistance in plants, effectively warding off pathogenic invasions. This study highlights the potential and importance of microbial fertilizers in promoting sustainable agricultural development, offering new strategies and perspectives for future agricultural production

    GATA-6 mediates transcriptional activation of aquaporin-5 through interactions with Sp1

    No full text
    We investigated mechanisms underlying GATA-6-mediated transcriptional activation of the alveolar epithelial type I cell-enriched gene aquaporin-5 (AQP5). GATA-6 expression increases in alveolar epithelial cells in primary culture, concurrent with upregulation of AQP5 and transition to a type I cell-like phenotype. Cotransfections in MLE-15 and NIH 3T3 cells demonstrated trans-activation by GATA-6 of a rat 1,716-bp-AQP5-luciferase (−1716-AQP5-Luc) reporter. Electrophoretic mobility shift assay and chromatin immunoprecipitation identified an interaction between GATA-6 and putative binding sites in the AQP5 promoter. However, mutation of these sites did not reduce GATA-6-mediated activation, implicating mechanisms in addition to direct binding of GATA-6 to DNA. A 5′-deletion construct, −358-AQP5-Luc, that does not encompass GATA motifs was still activated by GATA-6 by as much as 50% relative to −1716-AQP5-Luc. Internal deletion of the −358/−173 GC-rich domain, which includes several putative Sp1 consensus sites, reduced trans-activation by ∼60%, suggesting importance of this region for GATA-mediated activity. −358-AQP5-Luc was similarly activated by both GATA-6 and a GATA DNA-binding defective mutant, whereas cotransfections in Schneider S2 cells demonstrated dose-dependent trans-activation of −358-AQP5-Luc by Sp1. Activation of −358-AQP5-Luc by GATA-6 was dramatically reduced by Sp1 small-interfering RNA, and −358-AQP5-Luc was activated synergistically by GATA-6 and Sp1 in NIH 3T3 cells. Furthermore, association between endogenous GATA-6 and Sp1 was demonstrated by coimmunoprecipitation. These results suggest that transcriptional activation of AQP5 by GATA-6 is mediated at least in part through cooperative interactions with Sp1 occurring at the proximal promoter
    corecore