2 research outputs found

    Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice

    Get PDF
    Acetaminophen (APAP) overdose is one of the major causes of acute liver failure. Severe liver inflammation and the production of oxidative stress occur due to toxic APAP metabolites and glutathione depletion. Growing evidence has proved that vitamin D (VD) exerts anti-inflammatory and antioxidative functions. Our objective was to explore the protective role of calcitriol (VD3) in acute APAP-induced liver injury. Methods: Adult male mice were randomized into three groups; control (n = 8), APAP (n = 8), and VD3 group (n = 8). All mice, except controls, received oral administration of APAP (400 mg/kg) and were sacrificed 24 h later. In the VD3 group, calcitriol (10 µg/kg) was injected intraperitoneally 24 h before and after exposure to APAP. Blood samples were collected to assess serum aminotransferase and inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)]. Liver tissues were analyzed for hepatic glutathione (GSH), malondialdehyde (MDA), and histopathology. Results: APAP administration significantly increased serum aminotransferase, inflammatory cytokines, and induced cellular inflammation and necrosis. APAP also depleted hepatic GSH and elevated oxidative stress, as indicated by high MDA levels. In the APAP group, 25% of the mice (two out of eight) died, while no deaths occurred in the VD3 group. Treatment with calcitriol significantly reduced serum aminotransferase, TNF-α, and IL-6 levels in the VD3 group compared to the APAP group. Additionally, VD3 effectively restored GSH reserves, reduced lipid peroxidation, and attenuated hepatotoxicity. Conclusions: These findings demonstrate that VD3 prevents APAP-induced acute liver injury and reduces mortality in mice through its anti-inflammatory and antioxidative activity. Thus, VD3 might be a novel treatment strategy for APAP-induced hepatotoxicity

    Genistein and sex hormone treatment alleviated hepatic fat accumulation and inflammation in orchidectomized rats with nonalcoholic steatohepatitis

    No full text
    Testosterone deficiency has been reported to accelerate nonalcoholic fatty liver disease (NAFLD). However, there are minimal data on the risk of NAFLD in transgender women and the treatment of NAFLD in this population. This study aimed to investigate the treatment effects and the mechanisms of action of genistein and sex hormones in orchiectomized (ORX) rats with nonalcoholic steatohepatitis (NASH) induced by a high fat high fructose diet (HFHF). Seven-week old male Sprague-Dawley rats were randomly divided into 7 groups (n = 6 each group); 1) control group, 2) ORX + standard diet group, 3) HFHF group, 4) ORX + HFHF group, 5) ORX + HFHF diet + testosterone group (50 mg/kg body weight (BW) once weekly), 6) ORX + HFHF diet + estradiol group (1.6 mg/kg BW daily), and 7) ORX + HFHF diet + genistein group (16 mg/kg BW daily). The duration of treatment was 6 weeks. Liver tissue was used for histological examination by hematoxylin and eosin staining and hepatic fat measurement by Oil Red O staining. Protein expression levels of histone deacetylase3 (HDAC3) and peroxisome proliferator-activated receptor delta (PPARδ) were analyzed by immunoblotting. Hepatic nuclear factor (NF)-ĸB expression was evaluated by immunohistochemistry. Rats in the ORX + HFHF group had the highest degree of hepatic steatosis, lobular inflammation, hepatocyte ballooning and the highest percentage of positive Oil Red O staining area among all groups. The expression of HDAC3 and PPARδ was downregulated, while NF-ĸB expression was upregulated in the ORX + HFHF group when compared with control and ORX + standard diet groups. Testosterone, estradiol and genistein treatment improved histological features of NASH together with the reversal of HDAC3, PPARδ and NF-ĸB protein expression comparing with the ORX + HFHF group. In summary, genistein and sex hormone treatment could alleviate NASH through the up-regulation of HDAC3 and PPARδ, and the suppression of NF-ĸB expression
    corecore