36 research outputs found

    Scenario planning for the Edinburgh city region

    Get PDF
    This paper examines the application of scenario planning techniques to the detailed and daunting challenge of city re-positioning when policy makers are faced with a heavy history and a complex future context. It reviews a process of scenario planning undertaken in the Edinburgh city region, exploring the scenario process and its contribution to strategies and policies for city repositioning. Strongly rooted in the recent literature on urban and regional economic development, the text outlines how key individuals and organisations involved in the process participated in far-reaching analyses of the possible future worlds in which the Edinburgh city region might find itself

    Fasciculation analysis reveals a novel parameter that correlates with predicted survival in amyotrophic lateral sclerosis

    Get PDF
    Introduction Prognostic uncertainty in amyotrophic lateral sclerosis (ALS) confounds clinical management planning, patient counseling, and trial stratification. Fasciculations are an early clinical hallmark of disease and can be quantified noninvasively. Using an innovative analytical method, we correlated novel fasciculation parameters with a predictive survival model. Methods Using high-density surface electromyography, we collected biceps recordings from ALS patients on their first research visit. By accessing an online survival prediction tool, we provided eight clinical and genetic parameters to estimate individual patient survival. Fasciculation analysis was performed using an automated algorithm (Surface Potential Quantification Engine), with a Cox proportional hazards model to calculate hazard ratios. Results The median predicted survival for 31 patients was 41 (interquartile range, 31.5-57) months. Univariate hazard ratios were 1.09 (95% confidence interval [CI], 1.03-1.16) for the rate of change of fasciculation frequency (RoCoFF) and 1.10 (95% CI, 1.01-1.19) for the amplitude dispersion rate. Only the RoCoFF remained significant (P = .04) in a multivariate model. Discussion Noninvasive measurement of fasciculations at a single time-point could enhance prognostic models in ALS, where higher RoCoFF values indicate shorter survival

    Targeted neuronal nitric oxide synthase transgene delivery into stellate neurons reverses impaired intracellular calcium transients in prehypertensive rats.

    No full text
    Hypertension is associated with the early onset of cardiac sympathetic hyperresponsiveness and enhanced intracellular Ca(2+) concentration [Ca(2+)](i) in sympathetic neurons from both prehypertensive and hypertensive, spontaneously hypertensive rats (SHRs). Oxidative stress is a hallmark of hypertension, therefore, we tested the hypothesis that the inhibitory action of the nitric oxide-cGMP pathway on [Ca(2+)](i) transients is impaired in cardiac sympathetic neurons from the SHR. Stellate ganglia were isolated from young prehypertensive SHRs and age-matched normotensive Wistar-Kyoto rats. [Ca(2+)](i) was measured by ratiometric fluorescence imaging. Neurons from the prehypertensive SHR ganglia had a significantly higher depolarization evoked [Ca(2+)](i) transient that was also associated with decreased expression of neuronal nitric oxide synthase (nNOS), β1 subunit of soluble guanylate cyclase and cGMP when compared with the Wistar-Kyoto rat ganglia. Soluble guanylate cyclase inhibition or nNOS inhibition increased [Ca(2+)](i) in the Wistar-Kyoto rats but had no effect in SHR neurons. A nitric oxide donor decreased [Ca(2+)](i) in both sets of neurons, although this was markedly less in the SHR. A novel noradrenergic cell specific vector (Ad.PRSx8-nNOS/Cherry) or its control vector (Ad.PRSx8-Cherry) was expressed in sympathetic neurons. In the SHR, Ad.PRSx8-nNOS/Cherry-treated neurons had a significantly reduced peak [Ca(2+)](i) transient that was associated with increased tissue levels of nNOS protein and cGMP concentration compared with gene transfer of Ad.PRSx8-Cherry alone. nNOS inhibition significantly increased [Ca(2+)](i) after Ad.PRSx8-nNOS/Cherry expression. We conclude that artificial upregulation of stellate sympathetic nNOS via targeted gene transfer can directly attenuate intracellular Ca(2+) and may provide a novel method for decreasing enhanced cardiac sympathetic neurotransmission

    Dynamic changes in Wolbachia infection over a single generation of Drosophila suzukii, across a wide range of resource availability

    No full text
    Abstract Wolbachia bacteria are maternally inherited symbionts that commonly infect terrestrial arthropods. Many Wolbachia reach high frequencies in their hosts by manipulating their reproduction, for example by causing reproductive incompatibilities between infected male and uninfected female hosts. However, not all strains manipulate reproduction, and a key unresolved question is how these non‐manipulative Wolbachia persist in their hosts, often at intermediate to high frequencies. One such strain, wSuz, infects the invasive fruit pest Drosophila suzukii, spotted‐wing drosophila. Here, we tested the hypothesis that wSuz infection provides a competitive benefit when resources are limited. Over the course of one season, we established population cages with varying amounts of food in a semi‐field setting and seeded them with a 50:50 mixture of flies with and without Wolbachia. We predicted that Wolbachia‐infected individuals should have higher survival and faster development than their uninfected counterparts when there was little available food. We found that while food availability strongly impacted fly fitness, there was no difference in development times or survival between Wolbachia‐infected and uninfected flies. Interestingly, however, Wolbachia infection frequencies changed dramatically, with infections either increasing or decreasing by as much as 30% in a single generation, suggesting the possibility of unidentified factors shaping Wolbachia infection over the course of the season
    corecore