235 research outputs found

    An integer programming framework for inferring disease complexes from network data

    Get PDF
    MOTIVATION: Unraveling the molecular mechanisms that underlie disease calls for methods that go beyond the identification of single causal genes to inferring larger protein assemblies that take part in the disease process. RESULTS: Here, we develop an exact, integer-programming-based method for associating protein complexes with disease. Our approach scores proteins based on their proximity in a protein-protein interaction network to a prior set that is known to be relevant for the studied disease. These scores are combined with interaction information to infer densely interacting protein complexes that are potentially disease-associated. We show that our method outperforms previous ones and leads to predictions that are well supported by current experimental data and literature knowledge. AVAILABILITY AND IMPLEMENTATION: The datasets we used, the executables and the results are available at www.cs.tau.ac.il/roded/disease_complexes.zip. CONTACT: [email protected]

    Glial Cell Lineage Expression of Mutant Ataxin-1 and Huntingtin Induces Developmental and Late-Onset Neuronal Pathologies in Drosophila Models

    Get PDF
    In several neurodegenerative disorders, toxic effects of glial cells on neurons are implicated. However the generality of the non-cell autonomous pathologies derived from glial cells has not been established, and the specificity among different neurodegenerative disorders remains unknown.We newly generated Drosophila models expressing human mutant huntingtin (hHtt103Q) or ataxin-1 (hAtx1-82Q) in the glial cell lineage at different stages of differentiation, and analyzed their morphological and behavioral phenotypes. To express hHtt103Q and hAtx1-82Q, we used 2 different Gal4 drivers, gcm-Gal4 and repo-Gal4. Gcm-Gal4 is known to be a neuroglioblast/glioblast-specific driver whose effect is limited to development. Repo-Gal4 is known to be a pan-glial driver and the expression starts at glioblasts and continues after terminal differentiation. Gcm-Gal4-induced hHtt103Q was more toxic than repo-Gal4-induced hHtt103Q from the aspects of development, locomotive activity and survival of flies. When hAtx1-82Q was expressed by gcm- or repo-Gal4 driver, no fly became adult. Interestingly, the head and brain sizes were markedly reduced in a part of pupae expressing hAtx1-82Q under the control of gcm-Gal4, and these pupae showed extreme destruction of the brain structure. The other pupae expressing hAtx1-82Q also showed brain shrinkage and abnormal connections of neurons. These results suggested that expression of polyQ proteins in neuroglioblasts provided a remarkable effect on the developmental and adult brains, and that glial cell lineage expression of hAtx1-82Q was more toxic than that of hHtt103Q in our assays.All these studies suggested that the non-cell autonomous effect of glial cells might be a common pathology shared by multiple neurodegenerative disorders. In addition, the fly models would be available for analyzing molecular pathologies and developing novel therapeutics against the non-cell autonomous polyQ pathology. In conclusion, our novel fly models have extended the non-cell autonomous pathology hypothesis as well as the developmental effect hypothesis to multiple polyQ diseases. The two pathologies might be generally shared in neurodegeneration

    Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction

    Get PDF
    Polyglutamine expansion in the N terminus of huntingtin (htt) causes selective neuronal dysfunction and cell death by unknown mechanisms. Truncated htt expressed in vitro produced htt immunoreactive cytoplasmic bodies (htt bodies). The fibrillar core of the mutant htt body resisted protease treatment and contained cathepsin D, ubiquitin, and heat shock protein (HSP) 40. The shell of the htt body was composed of globules 14-34 nm in diameter and was protease sensitive. HSP70, proteasome, dynamin, and the htt binding partners htt interacting protein 1 (HIP1), SH3-containing Grb2-like protein (SH3GL3), and 14.7K-interacting protein were reduced in their normal location and redistributed to the shell. Removal of a series of prolines adjacent to the polyglutamine region in htt blocked formation of the shell of the htt body and redistribution of dynamin, HIP1, SH3GL3, and proteasome to it. Internalization of transferrin was impaired in cells that formed htt bodies. In cortical neurons of Huntington's disease patients with early stage pathology, dynamin immunoreactivity accumulated in cytoplasmic bodies. Results suggest that accumulation of a nonfibrillar form of mutant htt in the cytoplasm contributes to neuronal dysfunction by sequestering proteins involved in vesicle trafficking

    Evidence for the interaction of Endophilin A3 with endogenous K(Ca)2.3 channels in PC12 cells

    Get PDF
    Background/Aims: Small-conductance calcium-activated (SK) channels play an important role by controlling the after-hyperpolarization of excitable cells. The level of expression and density of these channels is an essential factor for controlling different cellular functions. Several studies showed a co-localization of KCa2.3 channels and Endophilin A3 in different tissues. Endophilin A3 belongs to a family of BAR- and SH3 domain containing proteins that bind to dynamin and are involved in the process of vesicle scission in clathrin-mediated endocytosis. Methods: Using the yeast two-hybrid system and the GST pull down assay we demonstrated that Endophilin A3 interacts with the N-terminal part of KCa2.3 channels. In addition, we studied the impact of this interaction on channel activity by patch clamp measurements in PC12 cells expressing endogenous KCa2.3 channels. KCa2.3 currents were activated by using pipette solutions containing 1 µM free Ca(2+). Results: Whole-cell measurements of PC12 cells transfected with Endophilin A3 showed a reduction of KCa2.3 specifc Cs(+) currents indicating that the interaction of Endophilin A3 with KCa2.3 channels also occurs in mammalian cells and that this interaction has functional consequences for current flowing through KCa2.3 channels. Since KCa2.3 specific currents could be increased in PC12 cells transfected with Endophilin A3 with DC-EBIO (30 µM), a known SK-channel activator, these data also implicate that Endophilin A3 did not significantly remove KCa2.3 channels from the membrane but changed the sensitivity of the channels to Ca(2+) which could be overcome by DC-EBIO. Conclusion: This interaction seems to be important for the function of KCa2.3 channels and might therefore play a significant role in situations where channel activation is pivotal for cellular function

    Amyloid-β(1-42) aggregation initiates its cellular uptake and cytotoxicity

    Get PDF
    The accumulation of amyloid beta peptide(1-42) (Abeta(1-42)) in extracellular plaques is one of the pathological hallmarks of Alzheimer disease (AD). Several studies have suggested that cellular reuptake of Abeta(1-42) may be a crucial step in its cytotoxicity, but the uptake mechanism is not yet understood. Abeta may be present in an aggregated form prior to cellular uptake. Alternatively, monomeric peptide may enter the endocytic pathway and conditions in the endocytic compartments may induce the aggregation process. Our study aims to answer the question whether aggregate formation is a prerequisite or a consequence of Abeta endocytosis. We visualized aggregate formation of fluorescently labeled Abeta(1-42) and tracked its internalization by human neuroblastoma cells and neurons. beta-Sheet-rich Abeta(1-42) aggregates entered the cells at low nanomolar concentration of Abeta(1-42). In contrast, monomer uptake faced a concentration threshold and occurred only at concentrations and time scales that allowed Abeta(1-42) aggregates to form. By uncoupling membrane binding from internalization, we found that Abeta(1-42) monomers bound rapidly to the plasma membrane and formed aggregates there. These structures were subsequently taken up and accumulated in endocytic vesicles. This process correlated with metabolic inhibition. Our data therefore imply that the formation of beta-sheet-rich aggregates is a prerequisite for Abeta(1-42) uptake and cytotoxicity

    Identification of the mitochondrial MSRB2 as a binding partner of LG72

    Get PDF
    Genetic studies have linked the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in the etiology of schizophrenia and other psychiatric disorders. However, the function of the protein encoded by this locus, LG72, is currently controversially discussed. Some studies have suggested that LG72 binds to and regulates the activity of the peroxisomal enzyme D-amino-acid-oxidase, while others proposed an alternative role of this protein due to its mitochondrial location in vitro. Studies with transgenic mice expressing LG72 further suggested that high levels of LG72 lead to an impairment of mitochondrial functions with a concomitant increase in reactive oxygen species production. In the present study, we now performed extensive interaction analyses and identified the mitochondrial methionine-R-sulfoxide reductase B2 (MSRB2) as a specific interaction partner of LG72. MSRB2 belongs to the MSR protein family and functions in mitochondrial oxidative stress defense. Based on our results, we propose that LG72 is involved in the regulation of mitochondrial oxidative stress

    Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1

    Get PDF
    Expansions of preexisting polyglutamine (polyQ) tracts in at least nine different proteins cause devastating neurodegenerative diseases. There are many unique features to these pathologies, but there must also be unifying mechanisms underlying polyQ toxicity. Using a polyQ-expanded fragment of huntingtin exon-1 (Htt103Q), the causal protein in Huntington disease, we and others have created tractable models for investigating polyQ toxicity in yeast cells. These models recapitulate key pathological features of human diseases and provide access to an unrivalled genetic toolbox. To identify toxicity modifiers, we performed an unbiased overexpression screen of virtually every protein encoded by the yeast genome. Surprisingly, there was no overlap between our modifiers and those from a conceptually identical screen reported recently, a discrepancy we attribute to an artifact of their overexpression plasmid. The suppressors of Htt103Q toxicity recovered in our screen were strongly enriched for glutamine- and asparagine-rich prion-like proteins. Separated from the rest of the protein, the prion-like sequences of these proteins were themselves potent suppressors of polyQ-expanded huntingtin exon-1 toxicity, in both yeast and human cells. Replacing the glutamines in these sequences with asparagines abolished suppression and converted them to enhancers of toxicity. Replacing asparagines with glutamines created stronger suppressors. The suppressors (but not the enhancers) coaggregated with Htt103Q, forming large foci at the insoluble protein deposit in which proteins were highly immobile. Cells possessing foci had fewer (if any) small diffusible oligomers of Htt103Q. Until such foci were lost, cells were protected from death. We discuss the therapeutic implications of these findings.Howard Hughes Medical InstituteNational Institutes of Health (U.S.) (Grant GM25874)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)G. Harold and Leila Y. Mathers FoundationBeckman Laser Institute FoundationEleanor Schwartz Charitable FoundationWhitehead Institute for Biomedical Researc
    • …
    corecore