229 research outputs found

    The Neurobase of ambiguity loss aversion about decision making

    Get PDF
    In our daily decision-making, there are two confusing problems: risk and ambiguity. Many psychological studies and neuroscience studies have shown that the prefrontal cortex (PFC) is an important neural mechanism for modulating the human brain in risk and ambiguity decision-making, especially the dorsolateral prefrontal cortex (DLPFC). We used transcranial direct current stimulation (tDCS) to reveal the causal relationship between the DLPFC and ambiguity decision-making. We design two experimental tasks involving ambiguity to gain and ambiguity to loss. The results of our study show that there is a significant effect on left DLPFC stimulation about ambiguity to loss, there is an insignificant effect on left DLPFC stimulation about ambiguity to gain, and there is an insignificant effect on right DLPFC stimulation about ambiguity to gain and ambiguity to loss. This result indicates that people are more sensitive to ambiguity loss than ambiguity gain. Further analysis found that the degree of participants’ attitudes toward ambiguity loss who received anodal simulation was lower than that who received sham stimulation across the left DLPFC, which means that the subjects had a strong ambiguity loss aversion after the participants received the anodal simulation of the left DLPFC

    Nonlocal Detection of Interlayer Three-Magnon Coupling

    Get PDF
    A leading nonlinear effect in magnonics is the interaction that splits a high-frequency magnon into two low-frequency magnons with conserved linear momentum. Here, we report experimental observation of nonlocal three-magnon scattering between spatially separated magnetic systems, viz. a CoFeB nanowire and a yttrium iron garnet (YIG) thin film. Above a certain threshold power of an applied microwave field, a CoFeB Kittel magnon splits into a pair of counterpropagating YIG magnons that induce voltage signals in Pt electrodes on each side, in excellent agreement with model calculations based on the interlayer dipolar interaction. The excited YIG magnon pairs reside mainly in the first excited (n=1) perpendicular standing spin-wave mode. With increasing power, the n=1 magnons successively scatter into nodeless (n=0) magnons through a four-magnon process. Our results demonstrate nonlocal detection of two separately propagating magnons emerging from one common source that may enable quantum entanglement between distant magnons for quantum information applications.</p

    Hydrogen Sulfide Promotes Tet1- and Tet2-mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis

    Get PDF
    Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Here we found that hydrogen sulfide (H2S) was required for Foxp3+ Treg cell differentiation and function, and that H2S deficiency led to systemic autoimmune disease. H2S maintained expression of methylcytosine dioxygenases Tet1 and Tet2 by sulfhydrating nuclear transcription factor Y subunit beta (NFYB) to facilitate its binding to Tet1 and Tet2 promoters. Transforming growth factor-β (TGF-β)-activated Smad3 and interleukin-2 (IL-2)-activated Stat5 facilitated Tet1 and Tet2 binding to Foxp3. Tet1 and Tet2 catalyzed conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg cell-specific hypomethylation pattern and stable Foxp3 expression. Consequently, Tet1 and Tet2 deletion led to Foxp3 hypermethylation, impaired Treg cell differentiation and function, and autoimmune disease. Thus, H2S promotes Tet1 and Tet2 expression, which are recruited to Foxp3 by TGF-β and IL-2 signaling to maintain Foxp3 demethylation and Treg cell-associated immune homeostasis

    Mobile N\'eel skyrmions at room temperature: status and future

    Full text link
    Magnetic skyrmions are topologically protected spin textures that exhibit many fascinating features. As compared to the well-studied cryogenic Bloch skyrmions in bulk materials, we focus on the room-temperature N\'eel skyrmions in thin-film systems with an interfacial broken inversion symmetry in this article. Specifically, we show the stabilization, the creation, and the implementation of N\'eel skyrmions that are enabled by the electrical current-induced spin-orbit torques. Towards the nanoscale N\'eel skyrmions, we further discuss the challenges from both material optimization and imaging characterization perspectives.Comment: This is an invited paper to be published in the AIP Advance

    Pharmacologic Stem Cell Based Intervention as a New Approach to Osteoporosis Treatment in Rodents

    Get PDF
    Background: Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels. Methods and Findings: We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studied revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced osteoporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density. Conclusion: Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts. © 2008 Yamaza et al
    corecore