5 research outputs found

    Biomechanical properties of ready-to-harvest rapeseed plants: Measurement and analysis

    No full text
    A large loss occurs in the combine harvesting of rapeseeds due to the fragility of rapeseed pods, and all the more so with the vibration of the combine header and the collision between the header and plants. Seed loss is greatly affected by the biomechanical properties of ready-to-harvest rapeseed plants. To understand the mechanism of pod cracking and seed loss and to propose measures for alleviating them, it is needed to study the biomechanical properties of ready-to-harvest rapeseed plants. To this end, “Huayouza 62”, a widely planted rapeseed variety in central China, was selected to study the biomechanical properties, including pod-cracking resistance, main stem-shearing resistance and resonant frequencies, of whole plants. The results showed that the distribution of pod-cracking resistance forces was 1.333–6.100 N in the mature stage, and the pod width and thickness had a significant influence on the cracking resistance. The main influencing factor of the main stem-shearing resistance was the stem diameter. A thicker main stem resulted in a larger shearing resistance force but a smaller shear stress. The moisture contents of the main stems varied from 47.71% to 76.13%. However, the varying moisture contents did not show a significant impact on the shearing resistance. The resonant frequencies of whole rapeseed plants ready for harvest ranged from 6.5 Hz to 7.5 Hz, which was close to the excitation frequency of the cutter bar on the 4LL-1.5Y harvester. This study lays a foundation for improving the design and construction of harvesting devices for rapeseed plants to reduce seed loss

    Design and Experimental Evaluation of a Form Trimming Machine for Horticultural Plants

    No full text
    Form trimming is an important practice in horticulture. Currently, handheld trimming tools are the most commonly used in China, which presents certain disadvantages including high human labor input, low productivity and inconsistent performance. In this work, a wheeled form trimming machine was designed for shrub plants with the aim of reducing labor input, increasing efficiency and improving trimming performance. The machine was mainly composed of three parts: a supporting frame, a rotary base and a knife system. The design and construction of the key components of the machine were introduced. The knife system was a combination of multiple cutter units with reciprocating motions. The number of units and their connecting angles could be adjusted to realize different trimming shapes. The knife system was carried by the rotary base and could realize 360° rotations to cut the plants into a desired form. Experiments were performed to determine the optimal working parameters (cutting frequency of the cutter unit and rotating speed of the rotary base). The similarity between the plant profile after trimming and the profile of the knife system and the consumed time in each operation were chosen as two evaluation indexes. Results showed that when the cutting frequency was 16.7 Hz and the rotating speed of the rotary base was 13.5 r/min, the trimming operation could be completed by two circles, and the time consumption was 8.89 s. Furthermore, to test the adaptability of the machine, five different shrub plants were chosen and trimmed by the machine, and results showed that the overall similarity was above 93%. Therefore, the form trimming machine developed could meet the requirements of shrub trimming in horticulture with desirable precision and adaptability

    Design and Experimentation of a Longitudinal Axial Flow Sunflower Oil Threshing Device

    No full text
    To address the problems of threshing loss and high impurity rate during sunflower oil harvesting, a vertical axial flow sunflower oil threshing device was designed. To reduce severe breakage of the sunflower plate and high entrainment loss rate when threshing by the traditional grating gravure sieve, a circular tube-type gravure screen was designed, and a contact model describing the grain rod, sunflower pan, and gravure screen was analyzed. The results show that reducing the diameter of the gravure screen round tubes can effectively reduce breakage of the sunflower pan. The range of the threshing gap, drum speed, and feed amount were determined by a single-factor test. Design-Expert software was used to design a response surface experiment: threshing gap, drum rotation speed, and feed amount were used as test factors, and the threshing loss rate of grains and the grain mass ratio of undersize grains were used as evaluation indicators. A regression model between test factors and evaluation indexes was established by variance analysis of the test results. A software-based numerical optimization function was used to reduce the loss rate of grains and increase the grain mass ratio of undersize grains. The optimal parameters of the threshing device were obtained by multi-objective optimization of all factors: the separation gap was 24.90 mm, drum speed was 244.14 r/min, feed amount was 2.95 kg/s, the threshing loss rate grains was 2.35%, and the grain mass ratio of undersized grains was 81.34%. This study can provide a reference for the design of a combined sunflower oil harvester threshing device

    Study on the Vibration Characteristics of Rape Plants Based on High-Speed Photography and Image Recognition

    No full text
    The transmission characteristics of the vibration excitation of rape plants are of great significance to the study of the harvesting loss and threshing mechanism of rape during harvesting. Aiming to examine the problem that the existing vibration measurement method cannot be well adapted to the vibration measurement of small plants such as rape, this article proposes a vibration measurement method based on high-speed photography and image recognition and uses this measurement method to study the vibration characteristics of rape plants in the three states, i.e., sweep frequency, standing frequency, and free attenuation, with a default hydraulic shaker. The results showed that the average measurement error of the vibration amplitude of this method was 0.0068 mm, and the relative measurement error of the amplitude at 20 Hz was 0.45%, which met the test requirements. Based on this measurement method, a sweep frequency test of rape plants was carried out. It was found that the first-order and second-order vibration modes of rape plants were concentrated in the first 15 Hz. The resonance range of rape plants mainly occurred at 6–7 Hz and 11–12 Hz. The standing frequency vibration test showed that rape plants had strong resonance at 6 Hz and 11 Hz, and grain falling was 1.192% and 0.992%, respectively, which was greater than those of other frequencies. The free attenuation vibration of the rape plant showed that the average attenuation coefficients of the mark points on the lateral branch at 20 cm, 30 cm, and 40 cm from the branch node were 0.542, 0.475, and 0.441, respectively, and the attenuation coefficient decreased as the distance between the mark point and the branch node increased. The amplitude attenuation coefficient of the main branch had little difference, and the average value was 0.797. This research can provide some reference for exploring the threshing mechanism of the rape drum and optimizing the header structure and parameters

    Design, Simulation and Experimentation of an Axial Flow Sunflower-Threshing Machine with an Attached Screw Conveyor

    No full text
    Sunflower threshing is one of the most interesting field processes for making the sunflower ready for seed handling, drying, cleaning and oil extraction. One of the biggest problems observed during the sunflower threshing process is the accumulation of threshed crop on the first third of the threshing roller and passing off some unthreshed parts of sunflower heads. To solve the aforementioned problem and optimize the efficiency of the sunflower threshing process, this research was focused on devising and testing a sunflower threshing machine with a close threshing box system equipped with a screw conveyor that evenly distributed the feedstock of sunflower heads on the entire length of the threshing roller. The machine was tested to assess the seed damage rate, unthreshed seed percentage, threshing efficiency, machine productivity, power requirements and specific energy consumption. The evaluation was done under different roller rotational speeds (150, 200, 250 and 300 rpm) and feeding rates (600, 700, 800 and 900 kg/h). The obtained results revealed that the threshing evaluation parameters were affected significantly by the roller rotational speed and feeding rate. The threshing efficiency was observed to rise with the rise in the roller rotational speed, and it also rose with the increasing feed rate up to 800 kg/h and then started to descend. The unthreshed seed percentage decreased with the increase in the roller rotational speed for all feed rates, and it decreased with the increasing feed rate up to 800 kg/h and then started to increase at the higher feed rates. The damaged seed percentage, power requirement and machine productivity increased with the increase of the roller speed and feed rate. The Buckingham π theorem was followed to find an equation to predict the threshing efficiency, resulting in an equation with an R2 value of 0.9309. With elimination of the blockage problem and better threshing efficiency, this machine could be a good choice for small- to medium-sized sunflower farms
    corecore