4 research outputs found

    Trimethylamine N-Oxide Levels Are Associated with Severe Aortic Stenosis and Predict Long-Term Adverse Outcome

    No full text
    Objective: Trimethylamine N-oxide (TMAO), a pathological microbial metabolite, is demonstrated to be related to cardiovascular diseases. This study was (1) to investigate the association between TMAO and aortic stenosis and (2) to determine the prognostic value of TMAO for predicting mortality after transcatheter aortic valve replacement (TAVR). Methods: 299 consecutive patients (77 (72–81) years, 58.2% male, Society of Thoracic Surgeons (STS) score 5.8 (4.9–9.3)) with severe aortic stenosis and 711 patients (59 (52–66) years, 51.9% male) without aortic stenosis were included in this retrospective study. A total of 126 pairs of patients were assembled by Propensity Score Matching. The primary outcome was all-cause mortality using survival analyses stratified by TMAO quartiles. Results: Patients with severe aortic stenosis had higher TMAO levels (3.18 (1.77–6.91) μmol/L vs. 1.78 (1.14–2.68) μmol/L, p p = 0.028) and higher late cumulative mortality (34.2% vs. 19.1%, log-rank p = 0.004). In Cox regression multivariate analysis, higher TMAO level remained an independent predictor (hazard ratio 1.788; 95% CI 1.064–3.005, p = 0.028) of all-cause mortality after adjusting for STS score, N-terminal pro b-type natriuretic peptide, and maximum velocity. Conclusions: The TMAO level was higher in aortic stenosis patients. Elevated TMAO was associated with poor adverse outcome after TAVR

    Long noncoding RNA LUCAT1 enhances the survival and therapeutic effects of mesenchymal stromal cells post-myocardial infarction

    No full text
    Mesenchymal stromal cell (MSC) transplantation has been a promising therapeutic strategy for repairing heart tissues post-myocardial infarction (MI). Nevertheless, its therapeutic efficacy remains low, which is mainly ascribed to the low viability of transplanted MSCs. Recently, long noncoding RNAs (lncRNAs) have been reported to participate in diverse physiological and pathological processes, but little is known about their role in MSC survival. Using unbiased transcriptome profiling of hypoxia-preconditioned MSCs (HP-MSCs) and normoxic MSCs (N-MSCs), we identified a lncRNA named lung cancer-associated transcript 1 (LUCAT1) under hypoxia. LUCAT1 knockdown reduced the survival of engrafted MSCs and decreased the MSC-based therapeutic potency, as shown by impaired cardiac function, reduced cardiomyocyte survival, and increased fibrosis post-MI. Conversely, LUCAT1 overexpression had the opposite results. Mechanistically, LUCAT1 bound with and recruited jumonji domain-containing 6 (JMJD6) to the promoter of forkhead box Q1 (FOXQ1), which demethylated FOXQ1 at H4R3me(2(s)) and H3R2me(2(a)), thus downregulating Bax expression and upregulating Bcl-2 expression to attenuate MSC apoptosis. Therefore, our findings revealed the protective effects of LUCAT1 on MSC apoptosis and demonstrated that the LUCAT1-mediated JMJD6-FOXQ1 pathway might represent a novel target to potentiate the therapeutic effect of MSC-based therapy for ischemic cardiovascular diseases
    corecore