15 research outputs found
Nuclear Spin Relaxation for Higher Spin
We study the relaxation of a spin I that is weakly coupled to a quantum
mechanical environment. Starting from the microscopic description, we derive a
system of coupled relaxation equations within the adiabatic approximation.
These are valid for arbitrary I and also for a general stationary
non--equilibrium state of the environment. In the case of equilibrium, the
stationary solution of the equations becomes the correct Boltzmannian
equilibrium distribution for given spin I. The relaxation towards the
stationary solution is characterized by a set of relaxation times, the longest
of which can be shorter, by a factor of up to 2I, than the relaxation time in
the corresponding Bloch equations calculated in the standard perturbative way.Comment: 4 pages, Latex, 2 figure
NMR and NQR Fluctuation Effects in Layered Superconductors
We study the effect of thermal fluctuations of the s-wave order parameter of
a quasi two dimensional superconductor on the nuclear spin relaxation rate near
the transition temperature Tc. We consider both the effects of the amplitude
fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations
in weakly coupled layered superconductors. In the treatment of the amplitude
fluctuations we employ the Gaussian approximation and evaluate the longitudinal
relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair
breaking effects, using the static pair fluctuation propagator D. The increase
in 1/T1 due to pair breaking in D is overcompensated by the decrease arising
from the single particle Green's functions. The result is a strong effect on
1/T1 for even a small amount of pair breaking. The phase fluctuations are
described in terms of dynamical BKT excitations in the form of pancake
vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field
fluctuations caused by the translational motion of VA excitations on 1/T1 and
on the transverse relaxation rate 1/T2 on both sides of the BKT transitation
temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly
on the diffusion constant that governs the motion of free and bound vortices as
well as the annihilation of VA pairs. We discuss the relaxation rates for real
multilayer systems where the diffusion constant can be small and thus increase
the lifetime of a VA pair, leading to an enhancement of the rates. We also
discuss in some detail the experimental feasibility of observing the effects of
amplitude fluctuations in layered s-wave superconductors such as the
dichalcogenides and the effects of phase fluctuations in s- or d-wave
superconductors such as the layered cuprates.Comment: 38 pages, 12 figure