4 research outputs found

    MIMO SAR Imaging for Wide-Swath Based on Compressed Sensing

    Get PDF
    To reduce the amount of data to be stored and software/hardware complexity and suppress range ambiguity, a novel MIMO SAR imaging based on compressed sensing is proposed under the condition of wide-swath imaging. Random phase orthogonal waveform (RPOW) is designed for MIMO SAR based on compressed sensing (CS). Echo model of sparse array in range and compressive sampling is reconstructed with CS theory. Resolution in range imaging is improved by using the techniques of digital beamforming (DBF) in transmit. Zero-point technique based on CS is proposed with DBF in receive and the range ambiguity is suppressed effectively. Comprehensive numerical simulation examples are performed. Its validity and practicality are validated by simulations

    Pilot Contamination Mitigation via a Novel Time-Shift Pilot Scheme in Large-Scale Multicell Multiuser MIMO Systems

    Get PDF
    We propose a novel time-shift pilot scheme to mitigate the pilot contamination in large-scale multicell multiuser MIMO (LS-MIMO) systems. In the proposed scheme, the length of the uplink training pilot sequence is equal to the cell number; that is to say, the same pilot sequence is used within a cell, while for different cells, pilot sequences are mutually orthogonal. Moreover, users within a cell transmit the same pilot sequence in a time-shift manner during the channel estimation stage and in this way all user terminals’ channel state information can be estimated without contamination. The asymptotic channel orthogonality is studied in the LS-MIMO system, with which the mutual interference among cells caused by data and pilot sequences can be cancelled with the successive interference cancellation (SIC) method. We explore the superiority of the proposed scheme in channel coefficient estimation, uplink data detection, and downlink data transmission steps. Theoretical analysis and simulation results demonstrate that the proposed time-shift pilot design can alleviate the pilot contamination problem and improve the performance of the considered system significantly compared with the popular orthogonal pilots

    Spectrum Sensing Using Co-Prime Array Based Modulated Wideband Converter

    No full text
    As known to us all, it is challenging to monitor wideband signals in frequency domain due to the restriction of hardware. Several practical sampling schemes, such as multicoset sampling and the modulated wideband converter (MWC), have been proposed. In this work, a co-prime array (CA) based modulated wideband converter (MWC) spectrum sensing method is suggested. Our proposed method has the same sampling principle as the MWC but has some advantages compared to MWC. Firstly, CA-based MWC is an array-based MWC system. Each sensor is usually corrupted by independent noise for an array system which can be used for noise averaging, while all channels in conventional MWC have the same receiving noise. Secondly, by incorporating the co-prime array, we can estimate the power spectrum of signal directly employing its second-order statistical properties. Moreover, the system minimal sampling rate can be reduced further because of the reduction of sampling channels. Simulation results show that our method has better performance than traditional methods

    Sensing Fractional Power Spectrum of Nonstationary Signals with Coprime Filter Banks

    No full text
    The coprime discrete Fourier transform (DFT) filter banks provide an effective scheme of spectral sensing for wide-sense stationary (WSS) signals in case that the sampling rate is far lower than the Nyquist sampling rate. And the resolution of the coprime DFT filter banks in the Fourier domain (FD) is 2π/MN, where M and N are coprime. In this work, a digital fractional Fourier transform- (DFrFT-) based coprime filter banks spectrum sensing method is suggested. Our proposed method has the same sampling principle as the coprime DFT filter banks but has some advantages compared to the coprime DFT filter banks. Firstly, the fractional power spectrum of the chirp-stationary signals which are nonstationary in the FD can be sensed effectively by the coprime DFrFT filter banks because of the linear time-invariant (LTI) property of the proposed system in discrete-time Fourier domain (DTFD), while the coprime DFT filter banks can only sense the power spectrum of the WSS signals. Secondly, the coprime DFrFT filter banks improve the resolution from 2π/MN to 2π sin α/MN by combining the fractional filter banks theory with the coprime theory. Simulation results confirm the obtained analytical results
    corecore