1,028 research outputs found

    Pseudogap, competing order and coexistence of staggered flux and d-wave pairing in high-temperature superconductors

    Full text link
    We study the t-J-V model of a doped Mott insulator in connection to high-T_c superconductors. The nearest neighbor Coulomb interaction (V) is treated quantum mechanically on equal footing as the antiferromagnetic exchange interaction (J). Motivated by the SU(2) symmetry at half-filling, we construct a large-N theory which allows a systematic study of the interplay between staggered flux order and superconductivity upon doping. We solve the model in the large-N limit and obtain the ground state properties and the phase diagram as a function of doping. We discuss the competition and the coexistence of the staggered flux and the d-wave superconductivity in the underdoped regime and the disappearance of superconductivity in the overdoped regimeComment: 5 pages, 3 figures, published versio

    Transitions Between Hall Plateaus and the Dimerization Transition of a Hubbard Chain

    Full text link
    We show that the plateau transitions in the quantum Hall effect is the same as the dimerization transition of a half-filled, one dimensional, U(2n)U(2n) Hubbard model at n=0n=0. We address the properties of the latter by a combination of perturbative renormalization group and Monte Carlo simulations. Results on both critical and off-critical properties are presented.Comment: minor change

    Comment on ``Analytic Structure of One-Dimensional Localization Theory: Re-Examining Mott's Law''

    Full text link
    The low-frequency conductivity of a disordered Fermi gas in one spatial dimension is governed by the Mott-Berezinskii law σ(ω)ω2lnω2\sigma(\omega) \propto \omega^2 \ln \omega^2. In a recent Letter [Phys. Rev. Lett. 84, 1760 (2000)] A. O. Gogolin claimed that this law is invalid, challenging our basic understanding of disordered systems and a massive amount of previous theoretical work. We point out two calculational errors in Gogolin's paper. Once we correct them, the Mott-Berezinskii formula is fully recovered. We also present numerical results supporting the Mott-Berezinskii formula but ruling out that of Gogolin.Comment: 1 page, 1 figure, RevTeX

    Superconductivity near Itinerant Ferromagnetic Quantum Criticality

    Full text link
    Superconductivity mediated by spin fluctuations in weak and nearly ferromagnetic metals is studied close to the zero-temperature magnetic transition. We solve analytically the Eliashberg equations for p-wave pairing and obtain the normal state quasiparticle self-energy and the superconducting transition temperature TcT_c as a function of the distance to the quantum critical point. We show that the reduction of quasiparticle coherence and life-time due to scattering by quasistatic spin fluctuations is the dominant pair-breaking process, which leads to a rapid suppression of TcT_c to a nonzero value near the quantum critical point. We point out the differences and the similarities of the problem to that of the theory of superconductivity in the presence of paramagnetic impurities.Comment: 4 pages, 1 figure, revised version to appear in Phys. Rev. Let
    corecore