23,506 research outputs found

    Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma.

    Get PDF
    Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy

    Temporal Structures in Positron Spectra and Charge-Sign Effects in Galactic Cosmic Rays

    Get PDF
    We present the precision measurements of 11 years of daily cosmic positron fluxes in the rigidity range from 1.00 to 41.9 GV based on 3.4 ×106 positrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The positron fluxes show distinctly different time variations from the electron fluxes at short and long timescales. A hysteresis between the electron fluxes and the positron fluxes is observed with a significance greater than 5 σ at rigidities below 8.5 GV. On the contrary, the positron fluxes and the proton fluxes show similar time variation. Remarkably, we found that positron fluxes are modulated more than proton fluxes with a significance greater than 5 σ for rigidities below 7 GV. These continuous daily positron fluxes, together with AMS daily electron, proton, and helium fluxes over an 11-year solar cycle, provide unique input to the understanding of both the charge-sign and mass dependencies of cosmic rays in the heliosphere

    Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene

    Full text link
    © 2014 American Chemical Society. Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to ∼10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy

    Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV

    Get PDF
    We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5 ×109 protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit variations on multiple timescales. From 2014 to 2018, we observed recurrent flux variations with a period of 27 days. Shorter periods of 9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and rigidity. The rigidity dependence of the 27-day periodicity is different from the rigidity dependences of 9-day and 13.5-day periods. Unexpectedly, the strength of 9-day and 13.5-day periodicities increases with increasing rigidities up to ∼10 GV and ∼20 GV , respectively. Then the strength of the periodicities decreases with increasing rigidity up to 100 GV
    • …
    corecore