172,869 research outputs found

    Stochastic reliable control of a class of uncertain time-delay systems with unknown nonlinearities

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper investigates the robust reliable control problem for a class of nonlinear time-delay stochastic systems. The system under study involves stochastics, state time-delay, parameter uncertainties, possible actuator failures and unknown nonlinear disturbances, which are often encountered in practice and the sources of instability. Our attention is focused on the design of linear state feedback memoryless controllers such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains stochastically exponentially stable in mean square, independent of the time delay. Sufficient conditions are proposed to guarantee the desired robust reliable exponential stability despite possible actuator failures, which are in terms of the solutions to algebraic Riccati inequalities. An illustrative example is exploited to demonstrate the applicability of the proposed design approac

    Bounded H∞ synchronization and state estimation for discrete time-varying stochastic complex for discrete time-varying stochastic complex networks over a finite horizon

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H∞ synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H∞-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a timevarying real-valued function and the Kronecker product, criteria are established that ensure the bounded H∞ synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H∞ state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.This work was supported in part by the Engineering and Physical Sciences Research Council of U.K. under Grant GR/S27658/01, the National Natural Science Foundation of China under Grant 61028008 and Grant 60974030, the National 973 Program of China under Grant 2009CB320600, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor E. Fabre

    Sampled-data synchronization control of dynamical networks with stochastic sampling

    Get PDF
    Copyright @ 2012 IEEEThis technical note is concerned with the sampled-data synchronization control problem for a class of dynamical networks. The sampling period considered here is assumed to be time-varying that switches between two different values in a random way with given probability. The addressed synchronization control problem is first formulated as an exponentially mean-square stabilization problem for a new class of dynamical networks that involve both the multiple probabilistic interval delays (MPIDs) and the sector-bounded nonlinearities (SBNs). Then, a novel Lyapunov functional is constructed to obtain sufficient conditions under which the dynamical network is exponentially mean-square stable. Both Gronwall's inequality and Jenson integral inequality are utilized to substantially simplify the derivation of the main results. Subsequently, a set of sampled-data synchronization controllers is designed in terms of the solution to certain matrix inequalities that can be solved effectively by using available software. Finally, a numerical simulation example is employed to show the effectiveness of the proposed sampled-data synchronization control scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61028008, 60974030, 61134009 and 61104125, the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany

    Cellular neural networks, Navier-Stokes equation and microarray image reconstruction

    Get PDF
    Copyright @ 2011 IEEE.Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier–Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time

    Sampled-data filtering with error covariance assignment

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.We consider the sampled-data filtering problem by proposing a new performance criterion in terms of the estimation error covariance. An innovation approach to sampled-data filtering is presented. First, the definition of the estimation covariance e for a sampled-data system is given, then the sampled-data filtering problem is reduced to the Kalman filter design problem for a fictitious discrete-time system, and finally, an effective method is developed to design discrete-time Kalman filters in such a way that the resulting sampled-data estimation covariance achieves a prescribed value. We derive both the existence conditions and the explicit expression of the desired filters and provide an illustrative numerical example to demonstrate the directness and flexibility of the present design metho

    Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 John Wiley & Sons, Ltd.In this paper, the gain-scheduled control problem is addressed by using probability-dependent Lyapunov functions for a class of discrete-time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time-varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain-scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed-loop system is exponentially mean-square stable. Note that the designed gain-scheduled controller is based on the measured time-varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time-varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the UK, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the National Natural Science Foundation of China under Grants 61028008, 61134009, 61074016, 61104125 and 60974030, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany

    Reliable H ∞ filtering for stochastic spatial–temporal systems with sensor saturations and failures

    Get PDF
    This study is concerned with the reliable H∞ filtering problem for a class of stochastic spatial–temporal systems with sensor saturations and failures. Different from the continuous spatial–temporal systems, the dynamic behaviour of the system under consideration evolves in a discrete rectangular region. The aim of this study is to estimate the system states through the measurements received from a set of sensors located at some specified points. In order to cater for more realistic signal transmission process, the phenomena of sensor saturations and sensor failures are taken into account. By using the vector reorganisation approach, the spatial–temporal system is first transformed into an equivalent ordinary differential dynamic system. Then, a filter is constructed and a sufficient condition is obtained under which the filtering error dynamics is asymptotically stable in probability and the H∞ performance requirement is met. On the basis of the analysis results, the desired reliable H∞ filter is designed. Finally, an illustrative example is given to show the effectiveness of the proposed filtering scheme.Deanship of Scientific Research (DSR) at King Abdulaziz University in Saudi Arabia under Grant 16-135-35-HiCi, the National Natural Science Foundation of China under Grants 61329301, 61134009 and 61473076, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the Shu Guang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Fundamental Research Funds for the Central Universities, the DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of German
    corecore