221,430 research outputs found
Mode-Seeking on Hypergraphs for Robust Geometric Model Fitting
In this paper, we propose a novel geometric model fitting method, called
Mode-Seeking on Hypergraphs (MSH),to deal with multi-structure data even in the
presence of severe outliers. The proposed method formulates geometric model
fitting as a mode seeking problem on a hypergraph in which vertices represent
model hypotheses and hyperedges denote data points. MSH intuitively detects
model instances by a simple and effective mode seeking algorithm. In addition
to the mode seeking algorithm, MSH includes a similarity measure between
vertices on the hypergraph and a weight-aware sampling technique. The proposed
method not only alleviates sensitivity to the data distribution, but also is
scalable to large scale problems. Experimental results further demonstrate that
the proposed method has significant superiority over the state-of-the-art
fitting methods on both synthetic data and real images.Comment: Proceedings of the IEEE International Conference on Computer Vision,
pp. 2902-2910, 201
Efficient Semidefinite Spectral Clustering via Lagrange Duality
We propose an efficient approach to semidefinite spectral clustering (SSC),
which addresses the Frobenius normalization with the positive semidefinite
(p.s.d.) constraint for spectral clustering. Compared with the original
Frobenius norm approximation based algorithm, the proposed algorithm can more
accurately find the closest doubly stochastic approximation to the affinity
matrix by considering the p.s.d. constraint. In this paper, SSC is formulated
as a semidefinite programming (SDP) problem. In order to solve the high
computational complexity of SDP, we present a dual algorithm based on the
Lagrange dual formalization. Two versions of the proposed algorithm are
proffered: one with less memory usage and the other with faster convergence
rate. The proposed algorithm has much lower time complexity than that of the
standard interior-point based SDP solvers. Experimental results on both UCI
data sets and real-world image data sets demonstrate that 1) compared with the
state-of-the-art spectral clustering methods, the proposed algorithm achieves
better clustering performance; and 2) our algorithm is much more efficient and
can solve larger-scale SSC problems than those standard interior-point SDP
solvers.Comment: 13 page
- …