285,799 research outputs found

    Figure of Merit for Dark Energy Constraints from Current Observational Data

    Full text link
    Choosing the appropriate figure of merit (FoM) for dark energy (DE) constraints is key in comparing different DE experiments. Here we show that for a set of DE parameters {f_i}, it is most intuitive to define FoM = 1/\sqrt{Cov(f1,f2,f3,...)}, where Cov(f1,f2,f3,...) is the covariance matrix of {f_i}. The {f_i} should be minimally correlated. We demonstrate two useful choices of {f_i} using 182 SNe Ia (compiled by Riess et al. 2007), [R(z_*), l_a(z_*), \Omega_b h^2] from the five year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and SDSS measurement of the baryon acoustic oscillation (BAO) scale, assuming the HST prior of H_0=72+/-8 km/s Mpc^{-1} and without assuming spatial flatness. We find that the correlation of (w_0,w_{0.5}) [w_0=w_X(z=0), w_{0.5}=w_X(z=0.5), w_X(a) = 3w_{0.5}-2w_0+3(w_0-w_{0.5})a] is significantly smaller than that of (w_0,w_a) [w_X(a)=w_0+(1-a)w_a]. In order to obtain model-independent constraints on DE, we parametrize the DE density function X(z)=\rho_X(z)/\rho_X(0) as a free function with X_{0.5}, X_{1.0}, and X_{1.5} [values of X(z) at z=0.5, 1.0, and 1.5] as free parameters estimated from data. If one assumes a linear DE equation of state, current data are consistent with a cosmological constant at 68% C.L. If one assumes X(z) to be a free function parametrized by (X_{0.5}, X_{1.0}, X_{1.5}), current data deviate from a cosmological constant at z=1 at 68% C.L., but are consistent with a cosmological constant at 95% C.L.. Future DE experiments will allow us to dramatically increase the FoM of constraints on (w_0,w_{0.5}) and of (X_{0.5}, X_{1.0}, X_{1.5}). This will significantly shrink the DE parameter space to enable the discovery of DE evolution, or the conclusive evidence for a cosmological constant.Comment: 7 pages, 3 color figures. Submitte

    Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

    Full text link
    We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging

    Multiscale simulations in simple metals: a density-functional based methodology

    Full text link
    We present a formalism for coupling a density functional theory-based quantum simulation to a classical simulation for the treatment of simple metallic systems. The formalism is applicable to multiscale simulations in which the part of the system requiring quantum-mechanical treatment is spatially confined to a small region. Such situations often arise in physical systems where chemical interactions in a small region can affect the macroscopic mechanical properties of a metal. We describe how this coupled treatment can be accomplished efficiently, and we present a coupled simulation for a bulk aluminum system.Comment: 15 pages, 7 figure

    Origin of superconductivity in nominally "undoped" T'-La2x_{2-x}Yx_{x}CuO4_{4} films

    Full text link
    We have systematically studied the transport properties of the La2x_{2-x}Yx_{x}CuO4_{4}(LYCO) films of T'-phase (0.05x0.300.05\leq x \leq 0.30). In this nominally "undoped" system, superconductivity was acquired in certain Y doping range (0.10x0.200.10\leq x \leq 0.20). Measurements of resistivity, Hall coefficients in normal states and resistive critical field (Hc2ρH^\rho_{c2})in superconducting states of the T'-LYCO films show the similar behavior as the known Ce-doped n-type cuprate superconductors, indicating the intrinsic electron-doping nature. The charge carriers are induced by oxygen deficiency. Non-superconducting Y-doped Pr- or Nd-based T'-phase cuprate films were also investigated for comparison, suggesting the crucial role of the radii of A-site cations in the origin of superconductivity in the nominally "undoped" cuptates. Based on a reasonable scenario in the microscopic reduction process, we put forward a self-consistent interpretation of these experimental observations.Comment: 8 pages, 9 figure

    Inclusive Decays of Bottom Hadrons in New Formulation of Heavy Quark Effective Field Theory

    Full text link
    We apply the new formulation of heavy quark effective field theory (HQEFT) to the inclusive decays of bottom hadrons. The long-term ambiguity of using heavy quark mass or heavy hadron mass for inclusive decays is clarified within the framework of the new formulation of HQEFT. The 1/mb1/m_b order corrections are absent and contributions from 1/mb21/m_b^2 terms are calculated in detail. This enables us to reliably extract the important CKM matrix element Vcb|V_{cb}| from the inclusive semileptonic decay rates. The resulting lifetime ratios τ(Bs0)/τ(B0)\tau(B^0_s)/\tau(B^0) and τ(Λb)/τ(B0)\tau(\Lambda_b)/\tau(B^0) are found to well agree with the experimental data. We also calculate in detail the inclusive semileptonic branching ratios and the ratios of the τ\tau and β\beta decay rates as well as the charm countings in the B0B^0, Bs0B^0_s and Λb\Lambda_b systems. For B0B^0 decays, all the observables are found to be consistent with the experimental data. More precise data for the B0B^0 decays and further experimental measurements for the Bs0B^0_s and Λb\Lambda_b systems will be very useful for testing the framework of new formulation of HQEFT at the level of higher order corrections.Comment: 20 pages, RevTex, 8 figures, 3 tables, revised version with `dressed heavy quark' being addressed, to be published in Int. J. Mod. Phys.

    A homogeneous analysis of disks around brown dwarfs

    Full text link
    We re-analyzed the Herschel/PACS data of a sample of 55 brown dwarfs (BDs) and very low mass stars with spectral types ranging from M5.5 to L0. We investigated the dependence of disk structure on the mass of the central object in the substellar regime based on a homogeneous analysis of Herschel data from flux density measurements to spectral energy distribution (SED) modeling. A systematic comparison between the derived disk properties and those of sun-like stars shows that the disk flaring of BDs and very low mass stars is generally smaller than that of their higher mass counterparts, the disk mass is orders of magnitude lower than the typical value found in T Tauri stars, and the disk scale heights are comparable in both sun-like stars and BDs. We further divided our sample into an early-type brown dwarf (ETBD) group and a late-type brown dwarf (LTBD) group by using spectral type (=M8) as the border criterion. We systematically compared the modeling results from Bayesian analysis between these two groups, and found the trends of flaring index as a function of spectral type also present in the substellar regime. The spectral type independence of the scale height is also seen between high-mass and very low-mass BDs. However, both the ETBD and LTBD groups feature a similar median disk mass of 10^{-5}Msun and no clear trend is visible in the distribution, probably due to the uncertainty in translating the far-IR photometry into disk mass, the detection bias and the age difference among the sample. Unlike previous studies, our analysis is completely homogeneous in Herschel/PACS data reduction and modeling with a statistically significant sample. Therefore, we present evidence of stellar-mass-dependent disk structure down to the substellar mass regime, which is important for planet formation models. (Abridged Version)Comment: Accepted for publication in A&
    corecore