251 research outputs found
Dropout Training as Adaptive Regularization
Dropout and other feature noising schemes control overfitting by artificially
corrupting the training data. For generalized linear models, dropout performs a
form of adaptive regularization. Using this viewpoint, we show that the dropout
regularizer is first-order equivalent to an L2 regularizer applied after
scaling the features by an estimate of the inverse diagonal Fisher information
matrix. We also establish a connection to AdaGrad, an online learning
algorithm, and find that a close relative of AdaGrad operates by repeatedly
solving linear dropout-regularized problems. By casting dropout as
regularization, we develop a natural semi-supervised algorithm that uses
unlabeled data to create a better adaptive regularizer. We apply this idea to
document classification tasks, and show that it consistently boosts the
performance of dropout training, improving on state-of-the-art results on the
IMDB reviews dataset.Comment: 11 pages. Advances in Neural Information Processing Systems (NIPS),
201
Altitude Training: Strong Bounds for Single-Layer Dropout
Dropout training, originally designed for deep neural networks, has been
successful on high-dimensional single-layer natural language tasks. This paper
proposes a theoretical explanation for this phenomenon: we show that, under a
generative Poisson topic model with long documents, dropout training improves
the exponent in the generalization bound for empirical risk minimization.
Dropout achieves this gain much like a marathon runner who practices at
altitude: once a classifier learns to perform reasonably well on training
examples that have been artificially corrupted by dropout, it will do very well
on the uncorrupted test set. We also show that, under similar conditions,
dropout preserves the Bayes decision boundary and should therefore induce
minimal bias in high dimensions.Comment: Advances in Neural Information Processing Systems (NIPS), 201
Relaxations for inference in restricted Boltzmann machines
We propose a relaxation-based approximate inference algorithm that samples
near-MAP configurations of a binary pairwise Markov random field. We experiment
on MAP inference tasks in several restricted Boltzmann machines. We also use
our underlying sampler to estimate the log-partition function of restricted
Boltzmann machines and compare against other sampling-based methods.Comment: ICLR 2014 workshop track submissio
Naturalizing a Programming Language via Interactive Learning
Our goal is to create a convenient natural language interface for performing
well-specified but complex actions such as analyzing data, manipulating text,
and querying databases. However, existing natural language interfaces for such
tasks are quite primitive compared to the power one wields with a programming
language. To bridge this gap, we start with a core programming language and
allow users to "naturalize" the core language incrementally by defining
alternative, more natural syntax and increasingly complex concepts in terms of
compositions of simpler ones. In a voxel world, we show that a community of
users can simultaneously teach a common system a diverse language and use it to
build hundreds of complex voxel structures. Over the course of three days,
these users went from using only the core language to using the naturalized
language in 85.9\% of the last 10K utterances.Comment: 10 pages, ACL201
Simple Recurrent Units for Highly Parallelizable Recurrence
Common recurrent neural architectures scale poorly due to the intrinsic
difficulty in parallelizing their state computations. In this work, we propose
the Simple Recurrent Unit (SRU), a light recurrent unit that balances model
capacity and scalability. SRU is designed to provide expressive recurrence,
enable highly parallelized implementation, and comes with careful
initialization to facilitate training of deep models. We demonstrate the
effectiveness of SRU on multiple NLP tasks. SRU achieves 5--9x speed-up over
cuDNN-optimized LSTM on classification and question answering datasets, and
delivers stronger results than LSTM and convolutional models. We also obtain an
average of 0.7 BLEU improvement over the Transformer model on translation by
incorporating SRU into the architecture.Comment: EMNL
KCF TRACKING ALGORITHM BASED ON VGG16 DEPTH FRAMEWORK
In order to solve the problem that the KCF tracking algo-rithm has occlusion or deformation and the disturbance fac-tors such as similar objects cause tracking failure; this paper proposes an improved algorithm combining VGG-16 neural network. Firstly, the VGG-16 network's powerful feature ex-traction capability is used to extract features that are more ro-bust to deformation and occlusion from different layers and different operations. Then, using the cyclic shift matrix of KCF algorithm, a large number of sample training classifiers are generated, and then new images are calculated. The filter-ing response of the block predicts the target position; in order to improve the real-time performance of the algorithm, the model and the new strategy for the KCF algorithm reduce the computational complexity by updating the model with a fixed frame interval. Compared with the traditional KCF algorithm, this method can effectively deal with the interference factors such as deformation and occlusion, and can achieve target tracking more quickly while ensuring accuracy
- …