252,663 research outputs found

    Phase Diagram for Quantum Hall Bilayers at ν=1\nu=1

    Full text link
    We present a phase diagram for a double quantum well bilayer electron gas in the quantum Hall regime at total filling factor ν=1\nu =1, based on exact numerical calculations of the topological Chern number matrix and the (inter-layer) superfluid density. We find three phases: a quantized Hall state with pseudo-spin superfluidity, a quantized Hall state with pseudo-spin ``gauge-glass'' order, and a decoupled composite Fermi liquid. Comparison with experiments provides a consistent explanation of the observed quantum Hall plateau, Hall drag plateau and vanishing Hall drag resistance, as well as the zero-bias conductance peak effect, and suggests some interesting points to pursue experimentally.Comment: 4 pages with 4 figure

    Anomalous magneto-structural behavior of MnBi explained: a path towards an improved permanent magnet

    Get PDF
    Low-temperature MnBi (hexagonal NiAs phase) exhibits anomalies in the lattice constants (a, c) and bulk elastic modulus (B) below 100 K, spin reorientation and magnetic susceptibility maximum near 90 K, and, importantly for high-temperature magnetic applications, an increasing coercivity (unique to MnBi) above 180 K. We calculate the total energy and magneto-anisotropy energy (MAE) versus (a, c) using DFT+U methods. We reproduce and explain all the above anomalies. We predict that coercivity and MAE increase due to increasing a, suggesting means to improve MnBi permanent magnets.Comment: 4 pages, 5 figure

    Particle-Hole Symmetry Breaking and the 5/2 Fractional Quantum Hall Effect

    Get PDF
    We report on the study of the fractional quantum Hall effect at the filling factor 5/2 using exact diagonalization method with torus geometry. The particle-hole symmetry breaking effect is considered using an additional three-body interaction. Both Pfaffian and anti-Pfaffian states can be the ground state depending on the sign of the three-body interaction. The results of the low-energy spectrum, the wave function overlap, and the particle-hole parity evolution, have shown the clear evidence of a direct sharp transition (possibly first-order) from the Pfaffian to the anti-Pfaffian state at the Coulomb point. A quantum phase diagram is established, where one finds further transitions from the Pfaffian or anti-Pfaffian state to the nearby compressible phases induced by a change of the pseudopotential.Comment: 4 pages, 4 figure

    Where is the jet quenching in Pb+Pb collisions at 158 AGeV?

    Full text link
    Because of the rapidly falling particle spectrum at large pTp_T from jet fragmentation at the CERN SPS energy, the high-pTp_T hadron distribution should be highly sensitive to parton energy loss inside a dense medium as predicted by recent perturbative QCD (pQCD) studies. A careful analysis of recent data from CERN SPS experiments via pQCD calculation shows little evidence of energy loss. This implies that either the life-time of the dense partonic matter is very short or one has to re-think about the problem of parton energy loss in dense matter. The hadronic matter does not seem to cause jet quenching in Pb+PbPb+Pb collisions at the CERN SPS. High-pTp_T two particle correlation in the azimuthal angle is proposed to further clarify this issue.Comment: 4 pages with 2 ps figures. Minors changes are made in the text with updated references. Revised version to appear in Phys. Rev. Letter

    Energy Dependence of Jet Quenching and Life-time of the Dense Matter in High-energy Heavy-ion Collisions

    Full text link
    Suppression of high pTp_T hadron spectra in high-energy heavy-ion collisions at different energies is studied within a pQCD parton model incorporating medium induced parton energy loss. The pTp_T dependence of the nuclear modification factor RAA(pT)R_{AA}(p_T) is found to depend on both the energy dependence of the parton energy loss and the power-law behavior of the initial jet spectra. The high pTp_T hadron suppression at s=62.4\sqrt{s}=62.4 GeV and its centrality dependence are studied in detail. The overall values of the modification factor are found to provide strong constraints on the lifetime of the dense matter.Comment: 6 pages in RevTex with 3 postscript figure

    BCS-BEC crossover in bilayers of cold fermionic polar molecules

    Get PDF
    We investigate the quantum and thermal phase diagram of fermionic polar molecules loaded in a bilayer trapping potential with perpendicular dipole moment. We use both a BCS-theory approach that is most reliable at weak coupling and a strong-coupling approach that considers the two-body bound dimer states with one molecule in each layer as the relevant degree of freedom. The system ground state is a Bose-Einstein condensate (BEC) of dimer bound states in the low-density limit and a paired superfluid (BCS) state in the high-density limit. At zero temperature, the intralayer repulsion is found to broaden the regime of BCS-BEC crossover and can potentially induce system collapse through the softening of roton excitations. The BCS theory and the strongly coupled dimer picture yield similar predictions for the parameters of the crossover regime. The Berezinskii-Kosterlitz-Thouless transition temperature of the dimer superfluid is also calculated. The crossover can be driven by many-body effects and is strongly affected by the intralayer interaction which was ignored in previous studies

    Superfluidity of Λ\Lambda hyperons in neutron stars

    Full text link
    We study the 1S0^1S_0 superfluidity of Λ\Lambda hyperons in neutron star matter and neutron stars. We use the relativistic mean field (RMF) theory to calculate the properties of neutron star matter. In the RMF approach, the meson-hyperon couplings are constrained by reasonable hyperon potentials that include the updated information from recent developments in hypernuclear physics. To examine the 1S0^1S_0 pairing gap of Λ\Lambda hyperons, we employ several ΛΛ\Lambda\Lambda interactions based on the Nijmegen models and used in double-Λ\Lambda hypernuclei studies. It is found that the maximal pairing gap obtained is a few tenths of a MeV. The magnitude and the density region of the pairing gap are dependent on the ΛΛ\Lambda\Lambda interaction and the treatment of neutron star matter. We calculate neutron star properties and find that whether the 1S0^1S_0 superfluidity of Λ\Lambda hyperons exists in the core of neutron stars mainly depends on the ΛΛ\Lambda\Lambda interaction used.Comment: 22 pages, 2 Tables, 6 Figur
    • …
    corecore