236,327 research outputs found
On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach
Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Robust stability serves as an important regulation mechanism in system biology and synthetic biology. In this paper, the robust stability analysis problem is investigated for a class of nonlinear delayed genetic regulatory networks with parameter uncertainties and stochastic perturbations. The nonlinear function describing the feedback regulation satisfies the sector condition, the time delays exist in both translation and feedback regulation processes, and the state-dependent Brownian motions are introduced to reflect the inherent intrinsic and extrinsic noise perturbations. The purpose of the addressed stability analysis problem is to establish some easy-to-verify conditions under which the dynamics of the true concentrations of the messenger ribonucleic acid (mRNA) and protein is asymptotically stable irrespective of the norm-bounded modeling errors. By utilizing a new Lyapunov functional based on the idea of “delay fractioning”, we employ the linear matrix inequality (LMI) technique to derive delay-dependent sufficient conditions ensuring the robust stability of the gene regulatory networks. Note that the obtained results are formulated in terms of LMIs that can easily be solved using standard software packages. Simulation examples are exploited to illustrate the effectiveness of the proposed design procedures
Recommended from our members
A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, the synchronization problem is investigated for a class of stochastic complex networks with time delays. By utilizing a new Lyapunov functional form based on the idea of ‘delay fractioning’, we employ the stochastic analysis techniques and the properties of Kronecker product to establish delay-dependent synchronization criteria that guarantee the globally asymptotically mean-square synchronization of the addressed delayed networks with stochastic disturbances. These sufficient conditions, which are formulated in terms of linear matrix inequalities (LMIs), can be solved efficiently by the LMI toolbox in Matlab. The main results are proved to be much less conservative and the conservatism could be reduced further as the number of delay fractioning gets bigger. A simulation example is exploited to demonstrate the advantage and applicability of the proposed result.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Recommended from our members
Robust H∞ filter design with variance constraints and parabolic pole assignment
Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, we consider a multiobjective filtering problem for uncertain linear continuous time-invariant systems subject to error variance constraints. A linear filter is used to estimate a linear combination of the system states. The problem addressed is the design of a filter such that, for all admissible parameter uncertainties, the following three objectives are simultaneously achieved: 1) the filtering process is P-stable, i.e., the poles of the filtering matrix are located inside a parabolic region; 2) the steady-state variance of the estimation error of each state is not more than the individual prespecified value; and 3) the transfer function from exogenous noise inputs to error state outputs meets the prespecified H∞ norm upper-bound constraint. An effective algebraic matrix inequality approach is developed to derive both the existence conditions and the explicit expression of the desired filters. An illustrative example is used to demonstrate the usefulness of the proposed design approach
Learning a Mixture of Deep Networks for Single Image Super-Resolution
Single image super-resolution (SR) is an ill-posed problem which aims to
recover high-resolution (HR) images from their low-resolution (LR)
observations. The crux of this problem lies in learning the complex mapping
between low-resolution patches and the corresponding high-resolution patches.
Prior arts have used either a mixture of simple regression models or a single
non-linear neural network for this propose. This paper proposes the method of
learning a mixture of SR inference modules in a unified framework to tackle
this problem. Specifically, a number of SR inference modules specialized in
different image local patterns are first independently applied on the LR image
to obtain various HR estimates, and the resultant HR estimates are adaptively
aggregated to form the final HR image. By selecting neural networks as the SR
inference module, the whole procedure can be incorporated into a unified
network and be optimized jointly. Extensive experiments are conducted to
investigate the relation between restoration performance and different network
architectures. Compared with other current image SR approaches, our proposed
method achieves state-of-the-arts restoration results on a wide range of images
consistently while allowing more flexible design choices. The source codes are
available in http://www.ifp.illinois.edu/~dingliu2/accv2016
Recommended from our members
Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances
Copyright [2004] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we study the robust exponential filter design problem for a class of uncertain time-delay systems with both Markovian jumping parameters and nonlinear disturbances. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, and the parameter uncertainties appearing in the state and output equations are real, time dependent, and norm bounded. The time-delay and the nonlinear disturbances are assumed to be unknown. The purpose of the problem under investigation is to design a linear, delay-free, uncertainty-independent state estimator such that, for all admissible uncertainties as well as nonlinear disturbances, the dynamics of the estimation error is stochastically exponentially stable in the mean square, independent of the time delay. We address both the filtering analysis and synthesis issues, and show that the problem of exponential filtering for the class of uncertain time-delay jump systems with nonlinear disturbances can be solved in terms of the solutions to a set of linear (quadratic) matrix inequalities. A numerical example is exploited to demonstrate the usefulness of the developed theory
Recommended from our members
Nonlinear filtering for state delayed systems with Markovian switching
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper deals with the filtering problem for a general class of nonlinear time-delay systems with Markovian jumping parameters. The nonlinear time-delay stochastic systems may switch from one to the others according to the behavior of a Markov chain. The purpose of the problem addressed is to design a nonlinear full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically exponentially stable in the mean square. Both filter analysis and synthesis problems are investigated. Sufficient conditions are established for the existence of the desired exponential filters, which are expressed in terms of the solutions to a set of linear matrix inequalities (LMIs). The explicit expression of the desired filters is also provided. A simulation example is given to illustrate the design procedures and performances of the proposed method
- …