2 research outputs found
Entanglement Evolution in the Presence of Decoherence
The entanglement of two qubits, each defined as an effective two-level, spin
1/2 system, is investigated for the case that the qubits interact via a
Heisenberg XY interaction and are subject to decoherence due to population
relaxation and thermal effects. For zero temperature, the time dependent
concurrence is studied analytically and numerically for some typical initial
states, including a separable (unentangled) initial state. An analytical
formula for non-zero steady state concurrence is found for any initial state,
and optimal parameter values for maximizing steady state concurrence are given.
The steady state concurrence is found analytically to remain non-zero for low,
finite temperatures. We also identify the contributions of global and local
coherence to the steady state entanglement.Comment: 12 pages, 4 figures. The second version of this paper has been
significantly expanded in response to referee comments. The revised
manuscript has been accepted for publication in Journal of Physics
Evolution of entanglement entropy in one-dimensional systems
We study the unitary time evolution of the entropy of entanglement of a one-dimensional system between the degrees of freedom in an interval of length l and its complement, starting from a pure state which is not an eigenstate of the Hamiltonian. We use path integral methods of quantum field theory as well as explicit computations for the transverse Ising spin chain. In both cases, there is a maximum speed v of propagation of signals. In general the entanglement entropy increases linearly with time t up to t = l/2v, after which it saturates at a value proportional to l, the coefficient depending on the initial state. This behaviour may be understood as a consequence of causality