7 research outputs found

    The structuring role of artificial structure on fish assemblages in a dammed river of the Pearl River in China

    Get PDF
    To address the fish use patterns of artificial structures mimicking floating macrophytes deployed in a impounded tributary of the Pearl River, China, field experiments were performed from December 2014 to June 2016 using multi-mesh gillnet. The fish assemblages using artificial structures differ in terms of species richness, abundance, body size, diversity indices, and ecological traits from fish assemblages on natural barren habitats of this river. Overall, fish abundance, species richness, Shannon diversity index, and functional richness were higher at the artificial structures than at the control sites, while fish length and functional evenness was greater at the control sites in comparison to artificial structures. The introduction of artificial structures did not result in statistically significant effects on fish biomass as artificial structures attracted more individuals with smaller size. Seasonal changes of chlorophyll-a and transparency may affect the efficiency of artificial structure in harboring fishes. This study revealed that artificial structures, as synthesized habitats, are effective in acting as a “fish attractor” and an alternative tool to provide new habitats for smaller individuals in a dammed river like the Youjiang River which is a structure-less ecosystem

    Study of Pyrotechnic Compositions as Base Bleed Propellant

    No full text

    Fast and Precise Detection of Dense Soybean Seedlings Images Based on Airborne Edge Device

    No full text
    During the growth stage of soybean seedlings, it is crucial to quickly and precisely identify them for emergence rate assessment and field management. Traditional manual counting methods have some limitations in scenarios with large-scale and high-efficiency requirements, such as being time-consuming, labor-intensive, and prone to human error (such as subjective judgment and visual fatigue). To address these issues, this study proposes a rapid detection method suitable for airborne edge devices and large-scale dense soybean seedling field images. For the dense small target images captured by the Unmanned Aerial Vehicle (UAV), the YOLOv5s model is used as the improvement benchmark in the technical solution. GhostNetV2 is selected as the backbone feature extraction network. In the feature fusion stage, an attention mechanism—Efficient Channel Attention (ECA)—and a Bidirectional Feature Pyramid Network (BiFPN) have been introduced to ensure the model prioritizes the regions of interest. Addressing the challenge of small-scale soybean seedlings in UAV images, the model’s input size is set to 1280 × 1280 pixels. Simultaneously, Performance-aware Approximation of Global Channel Pruning for Multitask CNNs (PAGCP) pruning technology is employed to meet the requirements of mobile or embedded devices. The experimental results show that the identification accuracy of the improved YOLOv5s model reached 92.1%. Compared with the baseline model, its model size and total parameters were reduced by 76.65% and 79.55%, respectively. Beyond these quantitative evaluations, this study also conducted field experiments to verify the detection performance of the improved model in various scenarios. By introducing innovative model structures and technologies, the study aims to effectively detect dense small target features in UAV images and provide a feasible solution for assessing the number of soybean seedlings. In the future, this detection method can also be extended to similar crops

    Exploring the Drivers of Spatiotemporal Patterns in Fish Community in a Non-Fed Aquaculture Reservoir

    No full text
    Non-fed aquaculture is an important contributor to low environmental impact protein production. However, knowledge of spatiotemporal patterns of the fish community in non-fed fishery systems remains limited, despite their ecological importance for sustainable aquaculture and fisheries. To elucidate the status of the fisheries and their critical drivers in non-fed fishery systems, hydroacoustic surveys were conducted seasonally in Hongchaojiang Reservoir in two seasons (spring and autumn) of two consecutive years: 2018 and 2019. Results showed that the average fish density in Hongchaojiang Reservoir was 121.6 ind./1000 m3. Fish communities varied significantly between geographical locations and seasons. On the temporal scale, fish densities in October were higher than those in April. On the spatial scale, fish densities were higher in the upstream (S1 and S3) than those in the midstream (S2, S4, S5, S6), while the density of S7, S8 and S9 in the downstream was the lowest. Trophic level index, zooplankton, chlorophyll-a, and phytoplankton play vital roles in fish distributional patterns, while the target strength, which reflects fish body size, was highly associated with water temperature, dissolved oxygen, total organic carbon, and phytoplankton. These results suggest that the spatiotemporal distribution of the fish community in Hongchaojiang Reservoir was jointly influenced by biotic and abiotic variables of water bodies, and highlight the importance of water nutrient levels and food availability in shaping fish distribution in the non-fed aquaculture system. This study should improve our understanding of ecological patterns and dominant drivers in fish stocks and provide information for successful sustainable management in non-fed purification fisheries

    Otolith Microchemistry and Demographic History Provide New Insight into the Migratory Behavior and Heterogeneous Genetic Divergence of <i>Coilia grayii</i> in the Pearl River

    No full text
    Coilia grayii is the anadromous form of anchovy that is distributed in the East and South China Seas. It is a common fish species in the estuarine area of the Pearl River. Nevertheless, freshwater populations appear upstream in the Pearl River, but the migratory pathway has been mostly impeded by dam construction. Behavioral differences and constrained habitat within tributaries are suspected of promoting genetic divergence in these populations. In this study, we investigated the migratory behavior and genetic divergence of six populations of C. grayii fragmented by dams based on the otolith strontium/calcium (Sr/Ca) ratio, mitochondrial DNA, and microsatellite genotyping. All populations were in freshwater with low Sr/Ca ratios, except the estuarine population (Humen population) hatched in brackish water. Reduced nucleotide diversity corresponding to distance was observed. Populations from distant hydrological regions exhibited a decline in genetic diversity and a significant difference with the remaining populations after fitting the isolation by distance model. Pairwise fixation indices confirmed these results and moderate and significant differentiation was found between Hengxian site and downstream sites. Furthermore, STRUCTURE analyses revealed that all separated populations exhibited an admixed phylogenetic pattern except for individuals from the Hengxian locality. The upstream sites showed significantly increased resistance to gene flow from the estuarine population because of isolation by the dam. The results of the neutrality test and Bayesian skyline plots demonstrated complex demography—individuals’ experienced historical expansion and partial upper-dam populations had recently undergone a colonization, forming a new genetic structure. Accordingly, this study demonstrates differences in the migration pattern and genetic differentiation of C. grayii as a consequence of demographic history and current processes (habitat fragmentation and colonization)

    ddRAD‐Seq reveals evolutionary insights into population differentiation and the cryptic phylogeography of Hyporhamphus intermedius in Mainland China

    No full text
    Abstract Species differentiation and local adaptation in heterogeneous environments have attracted much attention, although little is known about the mechanisms involved. Hyporhamphus intermedius is an anadromous, brackish‐water halfbeak that is widely distributed in coastal areas and hyperdiverse freshwater systems in China, making it an interesting model for research on phylogeography and local adaptation. Here, 156 individuals were sampled at eight sites from heterogeneous aquatic habitats to examine environmental and genetic contributions to phenotypic divergence. Using double‐digest restriction‐site‐associated DNA sequencing (ddRAD‐Seq) in the specimens from the different watersheds, 5498 single nucleotide polymorphisms (SNPs) were found among populations, with obvious population differentiation. We find that present‐day Mainland China populations are structured into distinct genetic clusters stretching from southern and northern ancestries, mirroring geography. Following a transplant event in Plateau Lakes, there were virtually no variations of genetic diversity occurred in two populations, despite the fact two main splits were unveiled in the demographic history. Additionally, dorsal, and anal fin traits varied widely between the southern group and the others, which highlighted previously unrecognized lineages. We then explore genotype–phenotype‐environment associations and predict candidate loci. Subgroup ranges appeared to correspond to geographic regions with heterogeneous hydrological factors, indicating that these features are likely important drivers of diversification. Accordingly, we conclude that genetic and phenotypic polymorphism and a moderate amount of genetic differentiation occurred, which might be ascribed to population subdivision, and the impact of abiotic factors

    The structuring role of artificial structure on fish assemblages in a dammed river of the Pearl River in China

    No full text
    To address the fish use patterns of artificial structures mimicking floating macrophytes deployed in a impounded tributary of the Pearl River, China, field experiments were performed from December 2014 to June 2016 using multi-mesh gillnet. The fish assemblages using artificial structures differ in terms of species richness, abundance, body size, diversity indices, and ecological traits from fish assemblages on natural barren habitats of this river. Overall, fish abundance, species richness, Shannon diversity index, and functional richness were higher at the artificial structures than at the control sites, while fish length and functional evenness was greater at the control sites in comparison to artificial structures. The introduction of artificial structures did not result in statistically significant effects on fish biomass as artificial structures attracted more individuals with smaller size. Seasonal changes of chlorophyll-a and transparency may affect the efficiency of artificial structure in harboring fishes. This study revealed that artificial structures, as synthesized habitats, are effective in acting as a “fish attractor” and an alternative tool to provide new habitats for smaller individuals in a dammed river like the Youjiang River which is a structure-less ecosystem
    corecore