5 research outputs found

    Pairing in the iron arsenides: a functional RG treatment

    Full text link
    We study the phase diagram of a microscopic model for the superconducting iron arsenides by means of a functional renormalization group. Our treatment establishes a connection between a strongly simplified two-patch model by Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter range, the dominant pairing instability occurs in the extended s-wave channel. The results clearly show the relevance of pair scattering between electron and hole pockets. We also give arguments that the phase transition between the antiferromagnetic phase for the undoped system and the superconducting phase may be first order

    Effect of the tetrahedral distortion on the electronic properties of iron-pnictides

    Full text link
    We study the dependence of the electronic structure of iron pnictides on the angle formed by the arsenic-iron bonds. Within a Slater-Koster tight binding model which captures the correct symmetry properties of the bands, we show that the density of states and the band structure are sensitive to the distortion of the tetrahedral environment of the iron atoms. This sensitivity is extremely strong in a two-orbital (d_xz, d_yz) model due to the formation of a flat band around the Fermi level. Inclusion of the d_xy orbital destroys the flat band while keeping a considerable angle dependence in the band structure.Comment: 5 pages, including 5 figures. Fig. 5 replaced. Minor changes in the tex

    Near-degeneracy of several pairing channels in multiorbital models for the Fe-pnictides

    Full text link
    Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-energy band structure, and to the natural near-degeneracy of different pairing channels in superconductors with many distinct Fermi surface sheets. In particular, we review attempts to construct two-orbital effective band models, the argument for their fundamental inconsistency with the symmetry of these materials, and the comparison of the dynamical susceptibilities in two- and five-orbital models. We then present results for the magnetic properties, pairing interactions, and pairing instabilities within a five-orbital Random Phase Approximation model. We discuss the robustness of these results for different dopings, interaction strengths, and variations in band structure. Within the parameter space explored, an anisotropic, sign-changing s-wave state and a d_x2-y2 state are nearly degenerate, due to the near nesting of Fermi surface sheets.Comment: 17 pages, 23 figure

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    corecore