710 research outputs found

    Design and Implementation of FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network

    Get PDF
    The Bayesian confidence propagation neural network (BCPNN) has been widely used for neural computation and machine learning domains. However, the current implementations of BCPNN are not computationally efficient enough, especially in the update of synaptic state variables. This thesis proposes a hardware accelerator for the training and inference process of BCPNN. In the hardware design, several techniques are employed, including a hybrid update mechanism, customized LUT-based design for exponential operations, and optimized design that maximizes parallelism. The proposed hardware accelerator is implemented on an FPGA device. The results show that the computing speed of the accelerator can improve the CPU counterpart by two orders of magnitude. In addition, the computational modules of the accelerator can be reused to reduce hardware overheads while achieving comparable computing performance. The accelerator's potential to facilitate the efficient implementation for large-scale BCPNN neural networks opens up the possibility to realize higher-level cognitive phenomena, such as associative memory and working memory

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Open event extraction from online text using a generative adversarial network

    Get PDF
    To extract the structured representations of open-domain events, Bayesian graphical models have made some progress. However, these approaches typically assume that all words in a document are generated from a single event. While this may be true for short text such as tweets, such an assumption does not generally hold for long text such as news articles. Moreover, Bayesian graphical models often rely on Gibbs sampling for parameter inference which may take long time to converge. To address these limitations, we propose an event extraction model based on Generative Adversarial Nets, called Adversarial-neural Event Model (AEM). AEM models an event with a Dirichlet prior and uses a generator network to capture the patterns underlying latent events. A discriminator is used to distinguish documents reconstructed from the latent events and the original documents. A byproduct of the discriminator is that the features generated by the learned discriminator network allow the visualization of the extracted events. Our model has been evaluated on two Twitter datasets and a news article dataset. Experimental results show that our model outperforms the baseline approaches on all the datasets, with more significant improvements observed on the news article dataset where an increase of 15\% is observed in F-measure

    Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

    Full text link
    Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully identifying the intrinsic structures of the clean HSI part and the mixed noise part respectively. Specifically, for the clean HSI part, we use tensor Tucker decomposition to describe the global correlation among all bands, and an anisotropic spatial-spectral total variation (SSTV) regularization to characterize the piecewise smooth structure in both spatial and spectral domains. For the mixed noise part, we adopt the 1\ell_1 norm regularization to detect the sparse noise, including stripes, impulse noise, and dead pixels. Despite that TV regulariztion has the ability of removing Gaussian noise, the Frobenius norm term is further used to model heavy Gaussian noise for some real-world scenarios. Then, we develop an efficient algorithm for solving the resulting optimization problem by using the augmented Lagrange multiplier (ALM) method. Finally, extensive experiments on simulated and real-world noise HSIs are carried out to demonstrate the superiority of the proposed method over the existing state-of-the-art ones.Comment: 15 pages, 20 figure

    The Game Theory: Applications in the Wireless Networks

    Get PDF
    Recent years have witnessed a lot of applications in the computer science, especially in the area of the wireless networks. The applications can be divided into the following two main categories: applications in the network performance and those in the energy efficiency. The game theory is widely used to regulate the behavior of the users; therefore, the cooperation among the nodes can be achieved and the network performance can be improved when the game theory is utilized. On the other hand, the game theory is also adopted to control the media access control protocol or routing protocol; therefore, the energy exhaust owing to the data collision and long route can be reduced and the energy efficiency can be improved greatly. In this chapter, the applications in the network performance and the energy efficiency are reviewed. The state of the art in the applications of the game theory in wireless networks is pointed out. Finally, the future research direction of the game theory in the energy harvesting wireless sensor network is presented

    ATM : Adversarial-neural topic model

    Get PDF
    Topic models are widely used for thematic structure discovery in text. But traditional topic models often require dedicated inference procedures for specific tasks at hand. Also, they are not designed to generate word-level semantic representations. To address the limitations, we propose a neural topic modeling approach based on the Generative Adversarial Nets (GANs), called Adversarial-neural Topic Model (ATM) in this paper. To our best knowledge, this work is the first attempt to use adversarial training for topic modeling. The proposed ATM models topics with Dirichlet prior and employs a generator network to capture the semantic patterns among latent topics. Meanwhile, the generator could also produce word-level semantic representations. Besides, to illustrate the feasibility of porting ATM to tasks other than topic modeling, we apply ATM for open domain event extraction. To validate the effectiveness of the proposed ATM, two topic modeling benchmark corpora and an event dataset are employed in the experiments. Our experimental results on benchmark corpora show that ATM generates more coherence topics (considering five topic coherence measures), outperforming a number of competitive baselines. Moreover, the experiments on event dataset also validate that the proposed approach is able to extract meaningful events from news articles
    corecore