4,236 research outputs found
The effect of N fertilizer placement, formulation, timing, and rate on the agronomic performance in wheat
Non-Peer ReviewedIncreasing the efficiency of nitrogen fertilizer uptake by crops improves the agronomic, economic, and environmental value of fertilizer N. Band placement of urea below the soil surface increased recovery of N in plants in both conventional and no-tillage systems. The latter systems require all fertilizers be applied before or during the seeding operation. In order to avoid seedling damage caused by fertilizer, side banding and mid-row banding opener systems have been developed to separate the seed and fertilizer. The objective of this study was to compare the agronomic performance in wheat between side banding and mid-row banding N fertilization and estimate effects of fertilizer formulation, timing and rate in an Orthic Brown Chernozem. A three-year experiment (2000-2002) was conducted near Swift Current in the Brown Soil Zone (Swinton silt loam, Orthic Brown Chernozem) of southern Saskatchewan. Seventeen treatments were arranged in a randomized complete block design in four replications with plot size of 3 m × 9.2 m. A Canada Western Red Spring wheat, AC Barrie, was seeded on a no-tillage management. Results showed that the environment had a major impact on the grain yield and biomass production. In general, the difference in agronomic performance between side banding and mid-row banding treatments was small
BLUES from Music: BLind Underdetermined Extraction of Sources from Music
In this paper we propose to use an instantaneous ICA method (BLUES) to separate the instruments in a real music stereo recording. We combine two strong separation techniques to segregate instruments from a mixture: ICA and binary time-frequency masking. By combining the methods, we are able to make use of the fact that the sources are differently distributed in both space, time and frequency. Our method is able to segregate an arbitrary number of instruments and the segregated sources are maintained as stereo signals. We have evaluated our method on real stereo recordings, and we can segregate instruments which are spatially different from other instruments
Characterisation of the effects of salicylidene acylhydrazide compounds on type three secretion in Escherichia coli O157:H7
Recent work has highlighted a number of compounds that target bacterial virulence by affecting gene regulation. In this work, we show that small-molecule inhibitors affect the expression of the type III secretion system (T3SS) of <i>Escherichia coli</i> O157:H7 in liquid culture and when the bacteria are attached to bovine epithelial cells. The inhibition of T3SS expression resulted in a reduction in the capacity of the bacteria to form attaching and effacing lesions. Our results show a marked variation in the ability of four structurally-related compounds to inhibit the T3SS of a panel of isolates. Using transcriptomics, we provide a comprehensive analysis of the conserved- and inhibitor-specific transcriptional responses to the four compounds. These analyses of gene expression show that numerous virulence genes, located on horizontally-acquired DNA elements, are affected by the compounds but the number of genes significantly affected varied markedly between the compounds. Overall, we highlight the importance of assessing the effect of such "anti-virulence" agents on a range of isolates and discuss the possible mechanisms which may lead to the co-ordinate down-regulation of horizontally acquired virulence genes
Effects of TIG Welding Parameters on Morphology and Mechanical Properties of Welded Joint of Ni-base Superalloy
AbstractThe influences of parameters of tungsten inert gas arc welding on the morphology, microstructure, tensile property and fracture of welded joints of Ni-base superalloy have been studied. Results show that the increase of welding current and the decrease of welding speed bring about the large amount of heat input in the welding pool and the enlargement of width and deepness of the welding pool. The increase of impulse frequency has the same effect on the microstructure compared with the increase of welding current. The effect of welding parameters on the tensile strength and fracture was analyzed. It is found that the root of welding joint is unwelded when the welding current is lower, so that the strength and elongation of welded joint are inferior. And the more welding defects in the welding zone and the more hard and brittle phase precipitates in the overheated zone when the welding current is too high. Consequently, the strength and plasticity go up first and then go down, i.e. they have a peak value with welding current increasing. In addition, the decrease of impulse frequency is beneficial to the strength of the welded joint
Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?
Remnants of ancient retroviral infections during evolution litter all mammalian genomes. In modern humans, such endogenous retroviral (ERV) sequences comprise at least 8% of the genome. While ERVs and other types of transposable elements undoubtedly contribute to the genomic "junk yard", functions for some ERV sequences have been demonstrated, with growing evidence that ERVs can be important players in gene regulatory processes. Here we focus on one particular large family of human ERVs, termed HERVH, which several recent studies suggest has a key regulatory role in human pluripotent stem cells. Remarkably, this is not the first instance of an ERV controlling pluripotency. We speculate as to why this convergent evolution might have come about, suggesting that it may reflect selection on the virus to extend the time available for transposition. Alternatively it may reflect serendipity alone
Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny
Accurate reconstruction of phylogenies remains a key challenge in
evolutionary biology. Most biologically plausible formulations of the problem
are formally NP-hard, with no known efficient solution. The standard in
practice are fast heuristic methods that are empirically known to work very
well in general, but can yield results arbitrarily far from optimal. Practical
exact methods, which yield exponential worst-case running times but generally
much better times in practice, provide an important alternative. We report
progress in this direction by introducing a provably optimal method for the
weighted multi-state maximum parsimony phylogeny problem. The method is based
on generalizing the notion of the Buneman graph, a construction key to
efficient exact methods for binary sequences, so as to apply to sequences with
arbitrary finite numbers of states with arbitrary state transition weights. We
implement an integer linear programming (ILP) method for the multi-state
problem using this generalized Buneman graph and demonstrate that the resulting
method is able to solve data sets that are intractable by prior exact methods
in run times comparable with popular heuristics. Our work provides the first
method for provably optimal maximum parsimony phylogeny inference that is
practical for multi-state data sets of more than a few characters.Comment: 15 page
Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209
Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin
period of 424 ms that contains at least two strong absorption features in its
energy spectrum. This neutron star has been identified as a member of the
radio-quiet compact central objects in supernova remnants. It has been found
that 1E 1207.4-5209 is not spinning down monotonically suggesting that this
neutron star undergoes strong, frequent glitches, contains a fall-back disk, or
possess a binary companion. Here, we report on a sequence of seven XMM-Newton
observations of 1E 1207.4-5209 performed during a 40 day window in June/July
2005. Due to unanticipated variance in the phase measurements beyond the
statistical uncertainties, we could not identify a unique phase-coherent timing
solution. The three most probable timing solutions give frequency time
derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order
of significance). We conclude that the local frequency derivative during our
XMM-Newton observing campaign differs from the long-term spin-down rate by more
than an order of magnitude, effectively ruling out glitch models for 1E
1207.4-5209. If the long-term spin frequency variations are caused by timing
noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than
in other pulsars with similar period derivatives. Therefore, it is highly
unlikely that the spin variations are caused by the same physical process that
causes timing noise in other isolated pulsars. The most plausible scenario for
the observed spin irregularities is the presence of a binary companion to 1E
1207.4-5209. We identified a family of orbital solutions that are consistent
with our phase-connected timing solution, archival frequency measurements, and
constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated
Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds.
D. Page, R. Turolla & S. Zan
Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals
We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning
potential, U0, as high as 10^4 K, with U0 showing very little field
depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at
low temperatures and high magnetic fields, resulting in a very rigid vortex
lattice, even in fields very close to Hc2. The rigid vortices in the two
dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate
superconductors with 2D vortices, and make it being capable of cearrying very
high critical current.Flux jumping due to high Jc was also observed in large
samples at low temperatures.Comment: 4 pages, 7 figures. submitte
Quasiparticle Scattering Interference in High Temperature Superconductors
We propose that the energy-dependent spatial modulation of the local density
of states seen by Hoffman, et al [hoff2] is due to the scattering interference
of quasiparticles. In this paper we present the general theoretical basis for
such an interpretation and lay out the underlying assumptions. As an example,
we perform exact T-matrix calculation for the scattering due to a single
impurity. The results of this calculation is used to check the assumptions, and
demonstrate that quasiparticle scattering interference can indeed produce
patterns similar to those observed in Ref. [hoff2].Comment: RevTex4 twocolumn, 4 pages, 3 figures. Figs.2-3 virtually embedded
(bacause of too big size) while jpg files available in the postscript/source
package. Further polishe
Measurements of the (n,p) Reaction at IUCF
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
- …