71 research outputs found

    Comparison of Interpolation Methods in Bayer CFA Image Compression Based on Structure Separation and APBT-JPEG

    Get PDF
    The color filter array (CFA) captures only one-third of the necessary color intensities and the full color image is generated from the captured data by interpolation. In recent years, the algorithm of Bayer patterned image compression based on “structure separation ” has achieved better image quality. On the basis of previous work, the algorithm based on the all phase biorthogonal transform (APBT) and interpolation is proposed in this paper. Instead of the conventional DCT-JPEG, the APBT-JPEG significantly reduces complex multiplications and makes the quantization table easier. Several kinds of interpolation methods to the decompressed image data are also discussed in this paper, including nearest neighbor interpolation, bilinear interpolation, cubic convolution interpolation and a novel interpolation method based on APIDCT. Experimental results show that the proposed algorithm outperforms the one based on “structure separation”; and the APIDCT interpolation performs close to the conventional interpolation methods and behaves better than them at high bit rates

    SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form Layout-to-Image Generation

    Full text link
    Despite significant progress in Text-to-Image (T2I) generative models, even lengthy and complex text descriptions still struggle to convey detailed controls. In contrast, Layout-to-Image (L2I) generation, aiming to generate realistic and complex scene images from user-specified layouts, has risen to prominence. However, existing methods transform layout information into tokens or RGB images for conditional control in the generative process, leading to insufficient spatial and semantic controllability of individual instances. To address these limitations, we propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance. Owing to rich spatial and semantic information encapsulated in well-designed feature maps, SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works. Additionally, we propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms. The former aims to model the relationships among multiple objects within scenes while the latter is designed to heighten the model's sensitivity to the spatial information embedded in the guidance. Extensive experiments demonstrate that SSMG achieves highly promising results, setting a new state-of-the-art across a range of metrics encompassing fidelity, diversity, and controllability

    PSDiff: Diffusion Model for Person Search with Iterative and Collaborative Refinement

    Full text link
    Dominant Person Search methods aim to localize and recognize query persons in a unified network, which jointly optimizes two sub-tasks, \ie, detection and Re-IDentification (ReID). Despite significant progress, two major challenges remain: 1) Detection-prior modules in previous methods are suboptimal for the ReID task. 2) The collaboration between two sub-tasks is ignored. To alleviate these issues, we present a novel Person Search framework based on the Diffusion model, PSDiff. PSDiff formulates the person search as a dual denoising process from noisy boxes and ReID embeddings to ground truths. Unlike existing methods that follow the Detection-to-ReID paradigm, our denoising paradigm eliminates detection-prior modules to avoid the local-optimum of the ReID task. Following the new paradigm, we further design a new Collaborative Denoising Layer (CDL) to optimize detection and ReID sub-tasks in an iterative and collaborative way, which makes two sub-tasks mutually beneficial. Extensive experiments on the standard benchmarks show that PSDiff achieves state-of-the-art performance with fewer parameters and elastic computing overhead

    A Haar Wavelet Decision Feedback Channel Estimation Method in OFDM Systems

    No full text
    Channel estimation is a key technology in improving the performance of the orthogonal frequency division multiplexing (OFDM) system. The pilot-based channel estimation method decreases the spectral efficiency and data transmission rate. Some conventional channel estimation methods cannot suppress the noise effectively, which affects the quality of the final received signals. To solve these two problems, a Haar wavelet decision feedback (DF) channel estimation method, also named the Haar wavelet method, is proposed in this paper. The proposed Haar wavelet method can suppress the noise existing at the estimated channel impulse response (CIR) effectively, based on a time-domain threshold which is a standard deviation of noise obtained by wavelet decomposition. At the same time, the proposed Haar wavelet method just requires inserting one block pilot symbol in front of the first OFDM symbol, which therefore improves the data transmission rate and spectrum efficiency greatly. Simulation results are shown to verify the effectiveness of the proposed Haar wavelet method in multipath channel propagation conditions

    RST Resilient Watermarking Scheme Based on DWT-SVD and Scale-Invariant Feature Transform

    No full text
    Currently, most digital image watermarking schemes are affected by geometric attacks like rotation, scaling, and translation (RST). In the watermark embedding process, a robust watermarking scheme is proposed against RST attacks. In this paper, three-level discrete wavelet transform (DWT) is applied to the original image. The three-level low frequency sub-band is decomposed by the singular value decomposition (SVD), and its singular values matrix is extracted for watermarking embedding. Before the watermarking extraction, the keypoints are selected by scale-invariant feature transform (SIFT) in the original image and attacked image. By matching the keypoints in two images, the RST attacks can be precisely corrected and the better performance can be obtained. The experimental results show that the proposed scheme achieves good performance of imperceptibility and robustness to common image processing and malicious attacks, especially geometric attacks

    Channel Estimation Based on IOTA Filter in OFDM/OQPSK and OFDM/OQAM Systems

    No full text
    In this paper, we present a study of bit error rate (BER) for orthogonal frequency division multiplexing/offset quadrature phase shift keying (OFDM/OQPSK) and OFDM/offset quadrature amplitude modulation (OQAM) systems with an isotropic orthogonal transfer algorithm (IOTA) filter. The novel noise suppression method based on an IOTA filter is proposed to reduce the error of channel estimation caused by additive white Gaussian noise (AWGN). The OFDM/OQPSK and OFDM/OQAM systems do not insert the guard interval (GI) and pilots in the signal frames, thus they possess transmission efficiency. An analysis was carried out for convolutional coded OFDM/OQPSK and OFDM/OQAM systems in Rayleigh fading channels with generator polynomials and constraint lengths. Compared with conventional OFDM/QPSK and OFDM/QAM systems with the insertion of comb-type pilots, the proposed IOTA filter-based channel estimation method can provide significant energy per bit to time-varying noise power spectral density ratio gains over time and frequency-selective propagation Rayleigh fading channels in OFDM/OQPSK and OFDM/OQAM systems

    Review on Semi-Fragile Watermarking Algorithms for Content Authentication of Digital Images

    No full text
    With the popularity of network and the continuous development of multimedia technology, saving of network bandwidth and copyright protection of multimedia content have gradually attracted people’s attention. The fragile watermark for integrity authentication of image data and protection of copyright has become a hotspot. In the storage and transmission process, image data must be compressed to save network bandwidth. As a result, semi-fragile watermarking techniques, which can be used to distinguish common image processing operations from malicious tampering, are emerging. In this paper, semi-fragile watermarking algorithms for image authentication are surveyed. The basic principles and characteristics about semi-fragile watermarking algorithms are introduced, and several kinds of attack behaviors are also included. Aiming at several typical image-authentication algorithms, advantages and disadvantages are analyzed, and evaluation indexes of various algorithms are compared. Finally, we analyze the key points and difficulties in the study on semi-fragile watermarking algorithms, and the direction about future development is prospected

    Weights-Based Image Demosaicking Using Posteriori Gradients and the Correlation of R–B Channels in High Frequency

    No full text
    In this paper, we propose a weights-based image demosaicking algorithm which is based on the Bayer pattern color filter array (CFA). When reconstructing the missing G components, the proposed algorithm uses weights based on posteriori gradients to mitigate color artifacts and distortions. Furthermore, the proposed algorithm makes full use of the correlation of R−B channels in high frequency when interpolating R/B values at B/R positions. Experimental results show that the proposed algorithm is superior to previous similar algorithms in composite peak signal-to-noise ratio (CPSNR) and subjective visual effect. The biggest advantage of the proposed algorithm is the use of posteriori gradients and the correlation of R−B channels in high frequency

    An Image Copy-Move Forgery Detection Scheme Based on A-KAZE and SURF Features

    No full text
    The popularity of image editing software has made it increasingly easy to alter the content of images. These alterations threaten the authenticity and integrity of images, causing misjudgments and possibly even affecting social stability. The copy-move technique is one of the most commonly used approaches for manipulating images. As a defense, the image forensics technique has become popular for judging whether a picture has been tampered with via copy-move, splicing, or other forgery techniques. In this paper, a scheme based on accelerated-KAZE (A-KAZE) and speeded-up robust features (SURF) is proposed for image copy-move forgery detection (CMFD). It is difficult for most keypoint-based CMFD methods to obtain sufficient points in smooth regions. To remedy this defect, the response thresholds for the A-KAZE and SURF feature detection stages are set to small values in the proposed method. In addition, a new correlation coefficient map is presented, in which the duplicated regions are demarcated, combining filtering and mathematical morphology operations. Numerous experiments are conducted to demonstrate the effectiveness of the proposed method in searching for duplicated regions and its robustness against distortions and post-processing techniques, such as noise addition, rotation, scaling, image blurring, joint photographic expert group (JPEG) compression, and hybrid image manipulation. The experimental results demonstrate that the performance of the proposed scheme is superior to that of other tested CMFD methods

    Fragile Watermarking for Image Authentication Using the Characteristic of SVD

    No full text
    Digital image authentication has become a hot topic in the last few years. In this paper, a pixel-based fragile watermarking method is presented for image tamper identification and localization. By analyzing the left and right singular matrices of SVD, it is found that the matrix product between the first column of the left singular matrix and the transposition of the first column in the right singular matrix is closely related to the image texture features. Based on this characteristic, a binary watermark consisting of image texture information is generated and inserted into the least significant bit (LSB) of the original host image. To improve the security of the presented algorithm, the Arnold transform is applied twice in the watermark embedding process. Experimental results indicate that the proposed watermarking algorithm has high security and perceptual invisibility. Moreover, it can detect and locate the tampered region effectively for various malicious attacks
    • …
    corecore